首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ohuchi Y  Katayama Y  Maeda M 《The Analyst》2000,125(11):1905-1907
A fluorescent-labeled oligopeptide (DACM-CLRRASLK-fluorescein), containing a consensus amino acid sequence (RRXSL) of cyclic AMP (cAMP) dependent protein kinase A (PKA) substrate-proteins, was designed. The fluorescent peptide was a good substrate of PKA, and the phosphorylation of its serin residue caused an intensive change in fluorescent intensity. We expect that the peptide will be useful as a fluorescent indicator for monitoring PKA activity in living cells.  相似文献   

2.
Herein, we develop a convenient method to facilitate the solution‐phase fluorescent labelling of peptides based on the chemoselective acylation of α‐hydrazinopeptides. This approach combines the advantages of using commercially available amine‐reactive dyes and very mild conditions, which are fully compatible with the chemical sensitivity of the dyes. The usefulness of this approach was demonstrated by the labelling of apelin‐13 peptide. Various fluorescent probes were readily synthesized, enabling the rapid optimization of their affinities for the apelin receptor. Thus, the first far‐red fluorescent ligand with sub‐nanomolar affinity for the apelin receptor was characterized and shown to track the receptor efficiently in living cells by fluorescence confocal microscopy.  相似文献   

3.
We report the design and characterization of two genetically encoded fluorescent reporters of histone protein methylation. The reporters are four-part chimeric proteins consisting of a substrate peptide from the N-terminus of histone H3 fused to a chromodomain (a natural methyllysine-specific recognition domain), sandwiched between a fluorescence resonance energy transfer (FRET)-capable pair of fluorophores, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Enzymatic methylation by a methyltransferase induces complexation of the methylated substrate peptide to the chromodomain, changing the FRET level between the flanking CFP and YFP domains. Reporters developed using the chromodomains from HP1 and Polycomb respond to enzymatic methylation at the lysine 9 and lysine 27 positions of histone H3, respectively, giving 60% and 28% YFP/CFP emission ratio increases in vitro or in single living cells. These reporters should be useful for studying gene silencing and X-chromosome inactivation with high spatial and temporal resolution in intact cells and may also aid in the search for conjectured histone demethylase activity.  相似文献   

4.
Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.  相似文献   

5.
UV-protective coatings on live bacterial cells were created from the assembly of cationic and UV-absorbing anionic polyelectrolytes using layer-by-layer (LbL) methodology. A cationic polymer (polyallylamine) and three different anionic polymers with varying absorbance in the UV range (poly(vinyl sulfate), poly(4-styrenesulfonic acid), and humic acid) were used to encapsulate Escherichia coli cells with two different green fluorescent protein (GFP) expression systems: constitutive expression of a UV-excitable GFP (GFPuv) and regulated expression of the intensely fluorescent GFP from amphioxus (GFPa1) through a theophylline-inducible riboswitch. Riboswitches activate protein expression after specific ligand-RNA binding events. Hence, they operate as a cellular biosensor that will activate reporter protein synthesis after exposure to a ligand target. E. coli cells coated with UV-absorbing polymers demonstrated enhanced protection of GFP stability, metabolic activity, and viability after prolonged exposure to radiation from a germicidal lamp. The results show the effectiveness of LbL coatings to provide UV protection to living cells for biotechnological applications.  相似文献   

6.
Background fluorescence derived from subcellular compartments is a major drawback in high-resolution live imaging, especially of plant cells. A novel technique for contrast enhancement of fluorescence images of living cells expressing fluorescent fusion proteins termed fluorescence intensity decay shape analysis microscopy (FIDSAM) has been recently published and is applied here to plant cells expressing wild-type levels of a low-abundant membrane protein (BRI1-EGFP), demonstrating the applicability of FIDSAM to samples exhibiting about 80% autofluorescence. Furthermore, the combination of FIDSAM and fluorescence lifetime imaging microscopy enables the simultaneous determination and quantification of different ligand-specific responses in living cells with high spatial and temporal resolution even in samples with high autofluorescence background. Correlation of different responses can be used to determine the hormone ligand competence of different cell types as demonstrated here in BRI1-EGFP-expressing root and hypocotyl cells.  相似文献   

7.
Fluorescence imaging could be the most powerful technique available for observing spatial and temporal dynamics of biomolecules in living cells, if fluorescent indicators for the relevant biomolecules become available. We have recently developed fluorescent indicators for a variety of second messengers or protein phosphorylations. Using the indicators, we have visualized spatial and temporal dynamics of these molecular events in single living cells. These fluorescent indicators are becoming an indispensable tool for understanding the complex mechanism of signal transduction in living cells.  相似文献   

8.
The development of a method is described for the chemical labeling of proteins which occurs with high target specificity, proceeds within seconds to minutes, and offers a free choice of the reporter group. The method relies upon the use of peptide templates, which align a thioester and an N‐terminal cysteinyl residue such that an acyl transfer reaction is facilitated at nanomolar concentrations. The protein of interest is N‐terminally tagged with a 22 aa long Cys‐E3 peptide (acceptor), which is capable of forming a coiled‐coil with a reporter‐armed K3 peptide (donor). This triggers the transfer of the reporter to the acceptor on the target protein. Because ligation of the two interacting peptides is avoided, the mass increase at the protein of interest is minimal. The method is exemplified by the rapid fluorescent labeling and fluorescence microscopic imaging of the human Y2 receptor on living cells.  相似文献   

9.
We report a new method, Interaction-Dependent PRobe Incorporation Mediated by Enzymes, or ID-PRIME, for imaging protein-protein interactions (PPIs) inside living cells. ID-PRIME utilizes a mutant of Escherichia coli lipoic acid ligase, LplA(W37V), which can catalyze the covalent ligation of a coumarin fluorophore onto a peptide recognition sequence called LAP1. The affinity between the ligase and LAP1 is tuned such that, when each is fused to a protein partner of interest, LplA(W37V) labels LAP1 with coumarin only when the protein partners to which they are fused bring them together. Coumarin labeling in the absence of such interaction is low or undetectable. Characterization of ID-PRIME in living mammalian cells shows that multiple protein-protein interactions can be imaged (FRB-FKBP, Fos-Jun, and neuroligin-PSD-95), with as little as 10 min of coumarin treatment. The signal intensity and detection sensitivity are similar to those of the widely used fluorescent protein complementation technique (BiFC) for PPI detection, without the disadvantage of irreversible complex trapping. ID-PRIME provides a powerful and complementary approach to existing methods for visualization of PPIs in living cells with spatial and temporal resolution.  相似文献   

10.
The development of chemical probes for the investigation of the complex phosphorylation signaling cascades that regulate biological events is crucial to understanding these processes. We describe herein a bifunctional probe that enables spatial and temporal release of a biologically active ligand while allowing simultaneous monitoring of its binding to the protein of interest. Substitution of Tyr(-2) for the enviromentally sensitive fluorescent amino acid DANA in the sequence RLYRpSLPA which is known to bind the 14-3-3 protein does not adversely affect binding affinity and allows monitoring of the binding process. The binding of the peptide to 14-3-3 places the fluorescent reporter unit into a hydrophobic pocket, which changes the fluorescent maximum emission intensity and wavelength. At the same time, the newly developed photolabile 1-(2-nitrophenyl)ethyl-caged phosphoserine allows control of the release of the biologically active ligand through unmasking of the key phosphoserine functionality upon UV irradiation.  相似文献   

11.
Progress in understanding signal transduction and metabolic pathways is hampered by a shortage of suitable sensors for tracking metabolites, second messengers, and neurotransmitters in living cells. Here we introduce a class of rationally designed semisynthetic fluorescent sensor proteins, called Snifits, for measuring metabolite concentrations on the cell surface of mammalian cells. Functional Snifits are assembled on living cells through two selective chemical labeling reactions of a genetically encoded protein scaffold. Our best Snifit displayed fluorescence intensity ratio changes on living cells significantly higher than any previously reported cell-surface-targeted fluorescent sensor protein. This work establishes a generally applicable and rational strategy for the generation of cell-surface-targeted fluorescent sensor proteins for metabolites of interest.  相似文献   

12.
Axial coordination is a crucial biological process to regulate biomolecules’ functions in natural enzymes. However, it is a great challenge to determine the single or dual axial interaction between the metal center of enzymes and the ligand. In this work, a controllable axial coordination system was developed based on G-quadruplex/hemin complex by designing a series of fluorescent derivatives. The mechanism on axial coordination of G-quadruplex/hemin with coumarin-imidazole ligands was proposed to be single-sided, and led to fluorescence quenching of ligands. Upon addition of nitric oxide, the fluorescence of ligands was recovered through competitive axial coordination, providing a “signal on” strategy for signal transduction. More significantly, the fluorescent imaging of intracellular nitric oxide was achieved after conjugating with gold nanoparticles. Also, the proposed protocol provided a smart strategy to monitor the relationship between nitric oxide and p53 protein activity in living cells.  相似文献   

13.
Chemistry-based protein labeling in living cells is undoubtedly useful for understanding natural protein functions and for biological/pharmaceutical applications. Here, we report a novel approach for endogenous membrane-bound protein labeling for both in vitro and live cell conditions. A moderately reactive alkyloxyacyl imidazole (AI) assisted by ligand-binding affinity (ligand-directed AI (LDAI)) chemistry allowed us to selectively modify natural proteins, such as dihydrofolate reductase (DHFR) and folate receptor (FR), neither of which could be efficiently labeled using the recently developed ligand-directed tosylate approach. It was clear that LDAI selectively labeled a single Lys(K32) in DHFR, proximal to the ligand-binding pocket. We also demonstrate that the fluorescein-labeled (endogenous, by LDAI) FR works as a fluorescent biosensor on the live KB cell surface, which allowed us to carry out unprecedented in situ kinetic analysis of ligand binding to FR.  相似文献   

14.
Fluorescent biosensors that facilitate reagentless sensitive detection of small molecules are crucial tools in the areas of therapeutics and diagnostics. However, construction of fluorescent biosensors with desired characteristics, that is, detection wavelengths and concentration ranges for ligand detection, from macromolecular receptors is not a straightforward task. An ATP-binding ribonucleopeptide (RNP) receptor was converted to a fluorescent ATP sensor without chemically modifying the nucleotide in the ATP-binding RNA. The RNA subunit of the ATP-binding RNP and a peptide modified with a pyrenyl group formed a stable fluorescent RNP complex that showed an increase in the fluorescence intensity upon binding to ATP. The strategy to convert the ATP-binding RNP receptor to a fluorescent ATP sensor was applied to generate fluorescent ATP-binding RNP libraries by using a pool of RNA subunits obtained from the in vitro selection of ATP-binding RNPs and a series of fluorophore-modified peptide subunits. Simple screening of the fluorescent RNP library based on the fluorescence emission intensity changes in the absence and presence of the ligand afforded fluorescent ATP or GTP sensors with emission wavelengths varying from 390 to 670 nm. Screening of the fluorescence emission intensity changes in the presence of increasing concentrations of ATP allowed titration analysis of the fluorescent RNP library, which provided ATP sensors responding at wide concentration ranges of ATP. The combinatorial strategy using the modular RNP receptor reported here enables tailoring of a fluorescent sensor for a specific ligand without knowledge of detailed structural information for the macromolecular receptor.  相似文献   

15.
Lately, scientists have explored approaches to developing fluorescent and/or bioluminescent indicators to pinpoint cellular processes in single living cells. These analytical methods have become a key technology for visualizing and detecting what was otherwise unseen in live cells. The target signaling included second messengers, protein phosphorylations, protein–protein interactions, and protein localizations.  相似文献   

16.
We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.  相似文献   

17.
For nondestructive analysis of chemical processes in living cells, we developed novel intracellular fluorescent indicators for second messengers, protein phosphorylation, and protein/protein interactions that work in single living cells. Key molecules and steps of cellular signaling pathways were visualized under a confocal laser microscope in target live cells using developed fluorescent indicators. A second new approach to molecular imaging is also described. When chemically modified tips were used for STM measurements, contrast enhancements at specific regions in the STM images occurred on the basis of hydrogen bond and metal-coordination interactions. This enabled us to detect not only the distribution of specific chemical species and functional groups but also the orientation of functional groups. The contrast enhancements reflect the increase in a tunneling current due to the overlap of electronic wave functions induced by the chemical interactions between tip and sample.  相似文献   

18.
A special, water-soluble, fluorescent probe 1 was designed. This consisted of a fluorescein-based component to harvest irradiation at 488 nm and a rhodamine-based part designed to emit it at a significantly longer wavelength. This cassette was used to label an illustrative protein called ACBP. Evidence was accumulated to support the assertion that ACBP-1 bound its native ligand with a binding constant similar to that of the unlabeled protein, and retained its secondary structure (CD). ACBP-1 was imported into cells using the Chariot peptide. Confocal images proved that some ACBP-1 localized into the nucleus (as expected) and, most significantly, it could be visualized more effectively by irradiating at the donor (fluorescein-like) part of the cassette, than the acceptor (rhodamine-like) part. Overall, this study demonstrates that cassettes of this kind can label a protein without significantly perturbing its function or secondary structure and they can be visualized effectively via irradiation of the donor and observation of the acceptor fluorescence.  相似文献   

19.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

20.
Receptors on the surface of mammalian cells promote the uptake of cell-impermeable ligands by receptor-mediated endocytosis. To mimic this process, we synthesized small molecules designed to project anti-dinitrophenyl antibody-binding motifs from the surface of living Jurkat lymphocytes. These synthetic receptors comprise N-alkyl derivatives of 3beta-cholesterylamine as the plasma membrane anchor linked to 2,4-dinitrophenyl (DNP) and structurally similar fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD) headgroups. Insertion of two beta-alanine subunits between a DNP derivative and 3beta-cholesterylamine yielded a receptor that avidly associates with cell surfaces (cellular t(1/2) approximately 20 h). When added to Jurkat cells at 10 microM, this receptor enhanced uptake of an anti-DNP IgG ligand by approximately 200-fold in magnitude and approximately 400-fold in rate within 4 h (ligand internalization t(1/2) approximately 95 min at 37 degrees C). This non-natural receptor mimics many natural receptors by dynamically cycling between plasma membranes and intracellular endosomes (recycling t(1/2) approximately 3 min), targeting of protein ligands to proposed cholesterol and sphingolipid-enriched lipid raft membrane microdomains, and delivery of protein ligands to late endosomes/lysosomes. Quantitative dithionite quenching of fluorescent extracellular NBD headgroups demonstrated that other 3beta-cholesterylamine derivatives bearing fewer beta-alanines in the linker region or N-acyl derivatives of 3beta-cholesterylamine were less effective receptors due to more extensive trafficking to internal membranes. Synthetic cell surface receptors have potential applications as cellular probes, tools for drug delivery, and methods to deplete therapeutically important extracellular ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号