首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If F is a form of odd degree k with real coefficients in s variables where sc1(k), then there are integers x1,… xs not all zero, with |F(x1,… xs)| < 1.  相似文献   

2.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

3.
A Dirichlet series associated with a positive definite form of degree δ in n variables is defined by
DF(s,p,α)= α∈Zn?{0}F(α)?s e(ρF(α)+〈α, α〉)
where ? ∈ Q, α ∈ Qn, 〈x, y〉 = x1y1 + ? + xnyn, e(a) = exp (2πia) for aR, and s = σ + ti is a complex number. The author proves that: (1) DF(s, ?, α) has analytic continuation into the whole s-plane, (2) DF(s, ?, α), ? ≠ 0, is a meromorphic function with at most a simple pole at s = nδ. The residue at s = nδ is given explicitly. (3) ? = 0, α ? Zn, DF(s, 0, α) is analytic for α>, n(δ ? 1).  相似文献   

4.
Let F1(x, y),…, F2h+1(x, y) be the representatives of equivalent classes of positive definite binary quadratic forms of discriminant ?q (q is a prime such that q ≡ 3 mod 4) with integer coefficients, then the number of integer solutions of Fi(x, y) = n (i = 1,…, 2h + 1) can be calculated for each natural number n using L-functions of imaginary quadratic field Q((?q)1/2).  相似文献   

5.
Let n be a positive integer, L a subset of {0, 1,…,n}. We discuss the existence of partitions (or tilings) of the n-dimensional binary vector space Fn into L-spheres. By a L-sphere around an x in Fn we mean {y ? Fn, d(x, y) ? L}, d(x, y) being the Hamming distance betwe en x and y. These tilings are generalizations of perfect error correcting codes. We show that very few such tilings exist (Theorem 2) and characterize them all for any L ? {0, 1,…,[12n]}.  相似文献   

6.
Let k be an odd positive integer. Davenport and Lewis have shown that the equations
a1x1k+…+anxnk=0
with integer coefficients, have a nontrivial solution in integers x1,…, xN provided that
N?[36klog6k]
Here it is shown that for any ? > 0 and k > k0(?) the equations have a nontrivial solution provided that
N?8log 2+?k log k.
  相似文献   

7.
For an indefinite quadratic form f(x1, …, xn) let P(f) denote the greatest lower bound of the positive values assumed by f for integers x1, …, xn. This paper investigates the values of P3∥d∥ for nonzero ternary forms of signature ?1 and finds two new classes of forms with P3∥d∥ > 12.  相似文献   

8.
For a stationary autoregressive model of order s, the partial autocorrelation coefficients of order j, j=0,1,2,…,s?1, are defined; the partial autocorrelation coefficient of order zero being the same as the autocorrelation coefficient of order one. Denoting these s parameters by ?1,π1,…,πs?1, it is shown that their sample images, namely r1,P1,…,Ps?1, are asymptotically independently normally distributed with means equal to the corresponding population values and asymptotic variances given by
var(r1)=(1 ? ?21)(1 ? π21?(1 ? π2s ?1)n,
var(Pj)=(1 ? π2j(1 ? π2j+1)?(1 ? π2s ?1)n
,
j=1,2,…,s?1,
where n is the size of the sample from the autoregressive process of order s. The partial correlogram of the model and application of the result are discussed.  相似文献   

9.
If p is a polynomial with all roots inside the unit disc and C its companion matrix, then the Lyapunov equation
X ? C1XC = P
has a unique solution for every positive semidefinite matrix P. We characterize sets of vectors x0,…,xn?1 and y0,…,yn?1 such that X = G(x0,…,xn?1)= G(y0,…, yn?1)-1. Geometrical connections between such bases and contractions with one- dimensional defect spaces are established.  相似文献   

10.
A technique for the numerical approximation of matrix-valued Riemann product integrals is developed. For a ? x < y ? b, Im(x, y) denotes
χyχv2?χv2i=1mF(νi)dν12?dνm
, and Am(x, y) denotes an approximation of Im(x, y) of the form
(y?x)mk=1naki=1mF(χik)
, where ak and yik are fixed numbers for i = 1, 2,…, m and k = 1, 2,…, N and xik = x + (y ? x)yik. The following result is established. If p is a positive integer, F is a function from the real numbers to the set of w × w matrices with real elements and F(1) exists and is continuous on [a, b], then there exists a bounded interval function H such that, if n, r, and s are positive integers, (b ? a)n = h < 1, xi = a + hi for i = 0, 1,…, n and 0 < r ? s ? n, then
χr?χs(I+F dχ)?i=rsI+j=1pIji?1i)
=hpH(χr?1s)+O(hp+1)
Further, if F(j) exists and is continuous on [a, b] for j = 1, 2,…, p + 1 and A is exact for polynomials of degree less than p + 1 ? j for j = 1, 2,…, p, then the preceding result remains valid when Aj is substituted for Ij.  相似文献   

11.
We consider the pure initial value problem for the system of equations νt = νxx + ?(ν) ? w, wt= ε(ν ? γw), ε, γ ? 0, the initial data being (ν(x, 0), w(x, 0)) = (?(x), 0). Here ?(v) = ?v + H(v ? a), where H is the Heaviside step function and a ? (0, 12). This system is of the FitzHugh-Nagumo type and has several applications including nerve conduction and distributed chemical/ biochemical systems. It is demonstrated that this system exhibits a threshold phenomenon. This is done by considering the curve s(t) defined by s(t) = sup{x: v(x, t) = a}. The initial datum, ?(x), is said to be superthreshold if limt→∞ s(t) = ∞. It is proven that the initial datum is superthreshold if ?(x) > a on a sufficiently long interval, ?(x) is sufficiently smooth, and ?(x) decays sufficiently fast to zero as ¦x¦ → ∞.  相似文献   

12.
Let Xj = (X1j ,…, Xpj), j = 1,…, n be n independent random vectors. For x = (x1 ,…, xp) in Rp and for α in [0, 1], let Fj1(x) = αI(X1j < x1 ,…, Xpj < xp) + (1 ? α) I(X1jx1 ,…, Xpjxp), where I(A) is the indicator random variable of the event A. Let Fj(x) = E(Fj1(x)) and Dn = supx, α max1 ≤ Nn0n(Fj1(x) ? Fj(x))|. It is shown that P[DnL] < 4pL exp{?2(L2n?1 ? 1)} for each positive integer n and for all L2n; and, as n → ∞, Dn = 0((nlogn)12) with probability one.  相似文献   

13.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

14.
A set {b1,b2,…,bi} ? {1,2,…,N} is said to be a difference intersector set if {a1,a2,…,as} ? {1,2,…,N}, j > ?N imply the solvability of the equation ax ? ay = b′; the notion of sum intersector set is defined similarly. The authors prove two general theorems saying that if a set {b1,b2,…,bi} is well distributed simultaneously among and within all residue classes of small moduli then it must be both difference and sum intersector set. They apply these theorems to investigate the solvability of the equations (ax ? ayp = + 1, (au ? avp) = ? 1, (ar + asp) = + 1, (at + azp) = ? 1 (where (ap) denotes the Legendre symbol) and to show that “almost all” sets form both difference and sum intersector sets.  相似文献   

15.
The system ?x?t = Δx + F(x,y), ?y?t = G(x,y) is investigated, where x and y are scalar functions of time (t ? 0), and n space variables 1,…, ξn), Δx ≡ ∑i = 1n?2xi2, and F and G are nonlinear functions. Under certain hypotheses on F and G it is proved that there exists a unique spherically symmetric solution (x(r),y(r)), where r = (ξ12 + … + ξn2)12, which is bounded for r ? 0 and satisfies x(0) >x0, y(0) > y0, x′(0) = 0, y′(0) = 0, and x′ < 0, y′ > 0, ?r > 0. Thus, (x(r), y(r)) represents a time independent equilibrium solution of the system. Further, the linearization of the system restricted to spherically symmetric solutions, around (x(r), y(r)), has a unique positive eigenvalue. This is in contrast to the case n = 1 (i.e., one space dimension) in which zero is an eigenvalue. The uniqueness of the positive eigenvalue is used in the proof that the spherically symmetric solution described is unique.  相似文献   

16.
If r, k are positive integers, then Tkr(n) denotes the number of k-tuples of positive integers (x1, x2, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r = 1. An explicit formula for Tkr(n) is derived and it is shown that limn→∞Tkr(n)nk = 1ζ(rk).If S = {p1, p2, …, pa} is a finite set of primes, then 〈S〉 = {p1a1p2a2psas; piS and ai ≥ 0 for all i} and Tkr(S, n) denotes the number of k-tuples (x1, x3, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r ∈ 〈S〉. Asymptotic formulas for Tkr(S, n) are derived and it is shown that limn→∞Tkr(S, n)nk = (p1 … pa)rkζ(rk)(p1rk ? 1) … (psrk ? 1).  相似文献   

17.
The initial and boundary value problem for the degenerate parabolic equation vt = Δ(?(v)) + F(v) in the cylinder Ω × ¦0, ∞), Ω ? Rn bounded, for a certain class of point functions ? satisfying ?′(v) ? 0 (e.g., ?(v) = ¦v¦msign v) is considered. In the case that F(v) sign v ? C(1 + ¦?(v)¦α), α < 1, the equation has a global time solution. The same is true for α = 1 provided the measure of Ω is sufficiently small. In the case that F(v)?(v) is nondecreasing a condition is given on the initial state v(x, 0) which implies that the solution must blow up in finite time. The existence of such initial states is discussed.  相似文献   

18.
In this paper we establish maximum principles of the Cauchy problem for hyperbolic equations in R3 and Rn + 1(n ? 2). Our maximum principles generalize the results of Weinberger [5], and Sather [3, 4] for a class of equations such that the coefficients can be allowed to depend upon t, as well, in {x1, x2, t}-space and {x1, x2,…, xn, t}-space. Throughout this paper, the influence of the work of Douglis [1] is apparent. See [2].  相似文献   

19.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

20.
A new normal form of Boolean functions based on the sum (mod 2), product and negation is presented. Let n = {1, 2,…, n}, let As be the family of s-element subsets of a set A and let πa?φxa = 1. Then every Boolean function ?(x1,x2,…,xn) has a normal form
?(x1,x2,…,xn=s=0nΠA∈ns1⊕dAΠa∈Axa
with unique coefficients dA? {0, 1}. A transformation of Galois normal form into the present normal form is also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号