首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper reports the assignment of the rotational spectra of the m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. The m = 1 progression was not identified or assigned for both 13CC5H6-H2O and C6H5D-H2O in the earlier work, though for the symmetric isotopomers (C6H6-H2O/D2O/H218O), they were identified [H.S. Gutowsky, T. Emilsson, E. Arunan, J. Chem. Phys. 99 (1993) 4883]. The m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O were split into two, unlike that of the parent C6H6-H2O isotopomer. The splitting varied, somewhat randomly, with quantum numbers J and K. The m = 0 lines of 13CC5H6-H2O had significant overlap with the m = 1 lines of the parent isotopomer, clouding proper assignment, and leading to an rms deviation of about 200 kHz in the earlier work. The general semi-rigid molecular Hamiltonian coupled to an internal rotor, described recently by Duan et al. [Y.B. Duan, H.M. Zhang, K. Takagi, J. Chem. Phys. 104 (1996) 3914], is used in this work to assign both m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. Consequently, the m = 0 fits for 13CC5H6-H2O/D2O have an rms deviation of only 4/7 kHz, comparable to experimental uncertainties. The fits for m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O dimers have an rms deviation of about 200 kHz. However, it is of the same order of magnitude as that of the m = 1 state of the parent C6H6-H2O dimer. The A rotational constants determined from the m = 0 fits for both 13CC5H6-H2O and 13CC5H6-D2O isotopomers are identical and very close to the C rotational constant for 13CC5H6. This provides a direct experimental determination for the C rotational constant of 13CC5H6, which has a negligible dipole moment.  相似文献   

2.
The absorption spectra of C6H6 and C6D6 in the liquid phase have been studied near 340 nm. The absorption spectrophotometric mounting was a sequential double-beam attachment with linear response to energy on scanning of the spectrum before the exit slit and an electronic device which gives directly either the absorbance or the integrated absorbance of a transition and, consequently, its oscillator strength.The oscillator strength measured for the band of C6H6 is 8×10?8, which corresponds to a dipole moment of 2.4×10?3 Debye; this value is of the same order as a theoretical value calculated by Tsubomura and Mulliken (3.8×10?3 Debye) for a transition between states 3F and 3A of an oxygen-benzene pair. This agreement corroborates the hypothetical existence of such a transition.The first vibrational band is at 28553 cm?1 for C6H6; this band is not observed in the vapor or solid phase. It corresponds probably to the transition 0-0, which is considered in the literature to be near 29500 cm?1. The isotopic shift measured for this first band is 164 cm?1. The vibrational frequencies are, respectively, 910 cm?1 for C6H6 and 889 cm?1 for C6D6.  相似文献   

3.
Absolute photoabsorption cross sections for H2O and D2O have been measured photoelectrically from λλ 180 to 790 Å using synchrotron radiation. The cross sections increase smoothly with wavelength to ~λ610 Å, with both H2O and D2O displaying a broad absorption band extending above a nearly linear background from λλ 400 to 490 Å. The continuum has a maximum of ~ 22.5 Mb at λ 640 Å. Above λ 615 Å, superimposed on the continuum, a diffuse structure appears which is similar to the vibrational structure of the 2B2 states of H2O+ and D2O+ as observed in photoelectron spectra. The structure is believed to arise from excitation of a 1b2 electron to the vibrational levels of a Rydberg orbital with n1 ≈ 2.64.  相似文献   

4.
Electron energy peak shifts and peak shapes were determined in the ionization of H2O, D2O, H2S and SO2 by Ne(3P2) and He(21S, 23S) metastable atoms. The shifts are large, especially in ionization of H2O and D2O into the ionic ground state and are probably mostly due to chemical interaction during the collision.In a previous paper the electron energy distribution curves for ionization of CO, HCl, HBr, N2O, NO2, CO2, COS and CS2 by helium, neon and argon metastables and the characteristics of this ionization were described1. In this paper the series of triatomic molecules was extended to the molecules H2O, D2O, H2S and SO2. Because all these molecules have considerable dipole moments it could be expected that the peak shifts might be enhanced as compared with other triatomic molecules.  相似文献   

5.
Fifty Doppler-broadened absorption lines of ethylene have been measured within large profiles CO2 or N2O lase lines. These laser lines are produced by a high pressure waveguide laser and have a full width between 200 and 900 MHz. Eleven absorption lines, the more intense ones, have been assigned to the ν7 band of C2H4. The other absorption lines must belong to hot bands or to the ν7 band of H212C13CH2.  相似文献   

6.
The (2,0,1) ← (0,0,0) rovibrational transitions of D2O in the near infrared region were measured with a resolution of 0.07 cm−1using photoacoustic laser absorption spectroscopy. We report on the assignment of newly observed transitions and determine new inertial and centrifugal constants of D2O (2,0,1) using the Watson-type A-reduced Hamiltonian for asymmetric tops.  相似文献   

7.
The electronic absorption spectra of [(CH3)3NH] MnCl3.2H2O single crystals are reported in the 15,000–45,000 cm-1 region. In addition to the normally studied sextet → quartet transitions, special attention has been paid to the sextet → doublet transitions. Crystal field parameters evaluated (including the Trees' correction factor) to fit the observed spectra are B = 800, C = 2900, Dq = 680, and α = 76 cm-1.  相似文献   

8.
Broadening and shifting of the 211-202 transition of H216O, H217O, H218O by pressure of water, nitrogen and oxygen were precisely measured at room temperature using spectrometer with radio-acoustic detection of absorption. Shift parameters for all studied lines as well as broadening parameters of H217O, H218O lines were measured for the first time. Comparison of obtained results with previously known experimental and theoretical data is presented.  相似文献   

9.
The first band of the photoelectron spectrum of HDO has been recorded. In agreement with the selection rules of the group theory, the fundamental terms of the three symmetric vibrations of HDO (Cs symmetry) have been observed. Taking the geometry of the ion as parameters, the Franck-Condon factors for the ionization of H2O, D2O and HDO have been calculated. The geometry of the H2O+, D2O+, HDO+ ions (ground state) have been determined accurately by comparison of the calculated results with the corresponding photoelectron spectra. This geometry is approximately the same for the three ions: rOH  1,00 Å and < HOH  110°.  相似文献   

10.
The thermodynamic properties, spin–lattice relaxation times, T1, and spin–spin relaxation times, T2, of the 27Al, 87Rb, and 133Cs nuclei in MAl(SO4)2·12H2O (M=Rb and Cs) crystals were investigated, and the two crystals were found to lose H2O with increases in temperature. From our results for T1 and T2, we conclude that the discontinuities near Td in the T1 curves of the two crystals correspond to structural changes. In both crystals, below Td the water molecules surrounding the Al3+ and M+ nuclei form distorted octahedra, whereas above Td the water molecules around the Al3+ and M+ nuclei form regular octahedra and the environment of the Al3+ and M+ nuclei has cubic symmetry. Further, the T1 for the 27Al and 87Rb nuclei in RbAl(SO4)2·12H2O below Td were found to increase with increasing temperature, whereas the T1 for the 27Al and 133Cs nuclei in CsAl(SO4)2·12H2O were found to decrease. It is possible that this difference is due to the different characteristics of α- and β-type crystals.  相似文献   

11.
By using resonance-enhanced two-photon ionization, rotationally resolved spectra of the 610 band of 12C6D6 and (13C12C5D6 molecules have been obtained for the first time at a rotational temperature of 0.7 K in a pulsed supersonic beam. From the former, the values of B″ = 0.1573 ± 0.0008 cm−1, B′ = 0.1508 ± 0.0008 cm−1, and ξ′ = −0.412 ± 0.050 have been derived for rotational and Coriolis constants in the lower and upper levels of 12C6D6. Also, the spectra corresponding to 12C6H6 and 13C12C5H6 have been measured and the values B″ = 0.1892 ± 0.0008 cm−1, B′ = 0.1815 ± 0.0008 cm−1, and ξ′ = −0.586 ± 0.050 have been obtained for 12C6H6, in agreement with previous results. Rotational constants of 13C labeled benzene molecules have been geometrically deduced from the constants obtained. Experimental isotopic shifts of the vibronic origins of the 6a10 and 6b10 bands have been determined. There is agreement with previous 13C-benzene-h6 data. The present results are −0.91 ± 0.05 and 3.09 ± 0.05 cm−1 for 13C12C5D6 and −1.64 ± 0.05 and 2.64 ± 0.05 cm−1 for 13C12C5H6. The splittings of vibrational modes 6b and 6a in the 1B2u state are 4.00 ± 0.10 cm−1 for 13C12C5D6 and 4.28 ± 0.10 cm−1 for 13C12C5H6.  相似文献   

12.
Carbon-13 frequency shifts for C2H4, C2D4, and as-C2H2D2 have been measured in isotopic solid solutions in crystalline films at 60 K. All but two of the shifts (for as-C2H2D2) are compatible with recently determined ζ data for C2H4, with 13C frequency shifts for C2H4 and C2D4 in the gas phase and with conventional frequency data. Together, these data completely determine with precision all 18 parameters of the GHFF for ethylene, the previous ambiguity in choice between two sets of Ag species force constants being removed. The force field reproduces closely the observed centrifugal distortion constants for C2H4, a ζ constant observed for trans-C2H2D2, and the inertia defects for C2H4, C2D4, and as-C2H2D2. Vibration and rotation constants for all isotopically deuterated ethylenes are calculated.Possible explanations for the two anomalous crystal shifts in as-C2H2D2 involve the effects of the crystal field, and failure of the use of Dennison's rule for making anharmonic corrections to the shifts. The former explanation is preferred as a result of thorough analysis of the anharmonicity constants for as-C2H2D2 determined from many overtone and combination bands in the gas and crystal spectra.  相似文献   

13.
The temperature dependences of 2H NMR spectra and spin-lattice relaxation time T1 have been measured for paramagnetic [Mn(H2O)6][SiF6]. The obtained 2H NMR spectra were simulated by considering the quadrupole interaction and paramagnetic shift. The variation of the spectra measured in phase III was explained by the 180° flip of water molecules. The activation energy Ea and the jumping rate at infinite temperature k0 for the 180° flip of H2O were obtained as 35 kJ mol−1 and 4×1014 s−1, respectively. The spectral change in phases I and II was ascribed to the reorientation of [Mn(H2O)6]2+ around the C3 axis where the Ea and k0 values were estimated as 45 kJ mol−1 and 1×1013 s−1, respectively. From the almost temperature independent and short T1 value, the correlation time for electron-spin flip-flops, τe, and the exchange coupling constant J were obtained as 3.0×10−10 s and 2.9×10−3 cm−1, respectively. The II-III phase transition can be caused by the onset of the jumping motion of [Mn(H2O)6]2+ around the C3 axis.  相似文献   

14.
The velocity dependence for the ionization of H2O and D2O to form H2O+ and D2O+ in collisions with both 23S and 21S metastable helium atoms has been measured in a crossed molecular beam apparatus using a mechanical velocity-selector on the metastable beam. The cross-sections are found to be proportional to the —n power of the relative collision energy, with n ? 0.4 for both metastable atoms in both gases. The branching ratios H2O+/OH+ and D2O+/OD+ were both found to be 4.3 for both metastable helium atoms, and to be independent of the relative collision energy.  相似文献   

15.
On the basis of the matrix effect of secondary-ion mass spectrometry (SIMS), the intermolecular interactions between D2O and hydrophobic molecules have been investigated at temperature of 15 K. The D+ yield is found to be enhanced markedly relative to the D3O+ yield when the D2O molecule forms a complex with the CO or CO2 molecules on the surface. The CO molecules are incorporated in the inner pores of amorphous solid water and then cover the outermost surface facing to the vacuum, which is followed by the 3D-island growth on it. A similar result is obtained for the adsorption of the CO2 molecule but the filling of the inner pores is not complete due to the lower mobility of the CO2 molecule. The D2O film grows on the CO2 layer, but a pure D2O film is hardly formed on the CO layer due to the occurrence of intermixing.  相似文献   

16.
The ν2 fundamental vibration-rotation band of T2O vapor has been measured at grating resolution, and the rotational structure has been analyzed. The band center and the values of the rotational constants A, B, and C for the ground state and excited state have been determined. These values are consistent with the data for J through 6, and with extrapolation from H2O and D2O.  相似文献   

17.
We measured the optical emission of H2O and D2O ices in visible region (300-500 nm) induced by energetic hydrogen ions (H+, H2+, and H3+) irradiation. Our analysis of the data of ion-stimulated luminescence (ISL) shows that all spectra of ISL emission are identical, independent of projectile. We show that all lines in the ISL emission spectrum may be assigned to decays from excited particles and/or fragments of H, H2, OH, and H2O. From the independence of emission spectrum on projectile we conclude that the final process causing the emissions may be attributed to the interaction between H+ (and/or H) and the water molecules.  相似文献   

18.
We report the experimental rotational Raman spectra of H2O, and of a mixture of D2O and HDO in the vapor phase at room temperature, and their interpretation in terms of rotational–vibrational energies, wavefunctions, and transition moments of the molecular polarizability. These transition moments are based on high-level ab initio calculations of the wavelength dependent polarizability surface, and on wavefunctions where the rotational–vibrational coupling is considered in detail. As a byproduct of this analysis several tables have been compiled including scattering strengths and assignments for individual rotational transitions of the three species. From these tables the rotational Raman spectra can be simulated over the range of temperatures up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

19.
The molecule styrene-β-D2 has been prepared. The liquid-phase infrared spectrum in the region 400 to 3500 cm?1 and the laser Raman spectrum have been recorded. Vibrational assignments for this molecule have been made largely by comparison with those of Condirston and Laposa (2) for C6H5CHCH2, C6H5CDCD2, C6D5CHCH2, and C6D5CDCD2.  相似文献   

20.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号