首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Lysocin E, a macrocyclic peptide, exhibits potent antibacterial activity against methicillin‐resistant Staphylococcus aureus (MRSA) through a novel mechanism. The first total synthesis of lysocin E was achieved by applying a full solid‐phase strategy. The developed approach also provides rapid access to the enantiomeric, epimeric, and N‐demethylated analogues of lysocin E. Significantly, the antibacterial activity of the unnatural enantiomer was comparable to that of the natural isomer, suggesting the absence of chiral recognition in its mode of action.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Controlling the structure sensitivity of catalyzed reactions over metals is central to developing atom‐efficient chemical processes. Approaching the minimum ensemble size, the properties enter a non‐scalable regime in which each atom counts. Almost all trends in this ultra‐small frontier derive from surface science approaches using model systems, because of both synthetic and analytical challenges. Exploiting the unique coordination chemistry of carbon nitride, we discriminate through experiments and simulations the interplay between the geometry, electronic structure, and reactivity of palladium atoms, dimers, and trimers. Catalytic tests evidence application‐dependent requirements of the active ensemble. In the semi‐hydrogenation of alkynes, the nuclearity primarily impacts activity, whereas the selectivity and stability are affected in Suzuki coupling. This powerful approach will provide practical insights into the design of heterogeneous catalysts comprising well‐defined numbers of atoms.  相似文献   

14.
15.
Hybrid organic‐inorganic perovskites, especially methylammonium lead triiodide (MAPbI3), are intensely studied for their optoelectronic properties. The organic MA+ cation is held responsible for the superior performance of MAPbI3 but also its instability toward moisture and heat. To explore compositions beyond MAPbI3, we performed experiments and calculations on two isomorphous perovskites CsSnBr3 and MASnBr3. CsSnBr3 is slightly smaller than MASnBr3 in cell dimension, but outperforms MASnBr3 in band gap energy, charge‐carrier reduced effective mass, and optical dielectric constant all by ≈19 %. These merits accumulate to drastically cut the exciton binding energy from 33 meV for MASnBr3 to 19.6 meV for CsSnBr3, making CsSnBr3 a black, free‐carrier semiconductor. CsSnBr3 also exhibits distinctly higher stability toward moisture and heat than its organic counterparts. These advantages suggest ecofriendly applications for CsSnBr3, such as tandem solar cells and direct X‐ray detectors.  相似文献   

16.
Diazirines are an attractive class of potential molecular tags for magnetic resonance imaging owing to their biocompatibility and ease of incorporation into a large variety of molecules. As recently reported, 15N2‐diazirine can be hyperpolarized by the SABRE‐SHEATH method, sustaining both singlet and magnetization states, thus offering a path to long‐lived polarization storage. Herein, we show the generality of this approach by illustrating that the diazirine tag alone is sufficient for achieving excellent signal enhancements with long‐lasting polarization. Our investigations reveal the critical role of Lewis basic additives, including water, on achieving SABRE‐promoted hyperpolarization. The application of this strategy to a 15N2‐diazirine‐containing choline derivative demonstrates the potential of 15N2‐diazirines as molecular imaging tags for biomedical applications.  相似文献   

17.
18.
19.
20.
Microglia, the brain‐resident macrophage, are involved in brain development and contribute to the progression of neural disorders. Despite the importance of microglia, imaging of live microglia at a cellular resolution has been limited to transgenic mice. Efforts have therefore been dedicated to developing new methods for microglia detection and imaging. Using a thorough structure–activity relationships study, we developed CDr20, a high‐performance fluorogenic chemical probe that enables the visualization of microglia both in vitro and in vivo. Using a genome‐scale CRISPR‐Cas9 knockout screen, the UDP‐glucuronosyltransferase Ugt1a7c was identified as the target of CDr20. The glucuronidation of CDr20 by Ugt1a7c in microglia produces fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号