首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

2.
Comb copolymers consisting of polystyrene backbone and poly(tert-butyl (meth)acrylate) side chains were synthesized by combination of nitroxide (TEMPO)-mediated polymerization (NMP) and photoinduced grafting from macro-iniferters. First, poly(chloromethylstyrene), PCMS, with the degree of polymerization and two random poly(styrene-co-chloromethylstyrene) copolymers, P(S-co-CMS), with similar but different content (8 and 14 mol%) of CMS units, were synthesized by NMP. In the second step the CMS units both in the homopolymer and the copolymers were converted to N,N-diethyldithiocarbamyl groups (DC) yielding photosensitive multifunctional macro-iniferters. Finally, tert-butyl methacrylate tBuMA was grafted from the synthesized polymer backbones by iniferter technique under UV-irradiation yielding copolymers polystyrene-graft-poly(tert-butyl methacrylate) PS-g-P(tBuMA). Grafting initiated by the macro-iniferters containing ∼6-11 DC initiating sites per macromolecule proceeded by pseudo-living polymerization mechanism, i.e., the number-average molecular weight increased with conversion and the SEC traces were unimodal. In contrast, photo-polymerization initiated by highly functionalized polystyrene backbone was poorly controlled. Hydrolysis of loosely grafted copolymers PS-g-P(tBuMA) afforded amphiphilic copolymers polystyrene-graft-poly(methacrylic acid). Molecular parameters of the synthesized graft copolymers in dilute THF solutions were determined by scattering (DLS, SLS, SAXS) and viscometric measurements.  相似文献   

3.
The synthesis of di‐ and triblock copolymers using atom transfer radical polymerization (ATRP) of n‐butyl acrylate (BA) and methyl methacrylate (MMA) is reported. In particular, synthetic procedures that allow for an easy and convenient synthesis of such block copolymers were developed by using CuBr and CuCl salts complexed with linear amines. Polymerizations were successfully conducted where the monomers were added to the reactor in a sequential manner. Poor cross‐propagation between poly(n‐butyl acrylate) (PBA) macroinitiators and MMA was minimized, and therefore control of molecular weights and distributions was realized, by using halogen exchange—a technique involving the addition of CuCl to the MMA during the chain extension of the PBA macroinitiator. High molecular weight (Mn ∼ 90,000) and low polydispersity (Mw /Mn < 1.35) ABA triblock copolymers were also prepared and their structure and properties in bulk have been preliminary characterized indicating the potential of ATRP for the production of all‐acrylic thermoplastic elastomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2023–2031, 2000  相似文献   

4.
Block polymerization of 1,1-diethylsilacyclobutane with styrene derivatives and methacrylate derivatives was investigated. Sequential addition of styrene to a living poly(1,1-diethylsilabutane), which was prepared from phenyllithium and 1,1-diethylsilacyclobutane in THF–hexane at −48°C, gave poly(1,1-diethylsilabutane)-b-polystyrene. Similarly, addition of 4-(tert-butyldimethylsiloxy)styrene to the living poly(1,1-diethylsilabutane) provided poly(1,1-diethylsilabutane)-b-poly(4-(tert-butyldimethylsiloxy)styrene). Poly(1,1-diethylsilabutane)-b-poly(methyl methacrylate) was obtained by treatment of living poly(1,1-diethylsilabutane) with 1,1-diphenylethylene followed by an addition of methyl methacrylate. Poly(1,1-diethylsilabutane)-b-poly(2-(tert-butyldimethylsiloxy)ethyl methacrylate) was also synthesized by adding 2-(tert-butyldimethylsiloxy)ethyl methacrylate to the living poly(1,1-diethylsilabutane) which was end-capped with 1,1-diphenylethylene in the presence of lithium chloride. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2699–2706, 1998  相似文献   

5.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

6.
Cyclic carbonate monomers based on a single biocompatible scaffold allow for incorporation of a wide range of functional groups into macromolecules via ring-opening polymerization.  相似文献   

7.
The photoinduced energy/electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerizations of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA, also known as poly[ethylene glycol] methyl ether methacrylate, PEGMA) and isomeric methyl 2-(oligo(ethylene oxide) methyl ether)acrylate (2OEOAM) macromonomers with OEO average degree of polymerization of 22 or 45 were conducted in aqueous media to provide insight into the effect of monomer structure on grafting-through RAFT of 1,1-disubstituted acrylic macromonomers. The polymerizations of all four monomers reached nearly quantitative conversion. The longer macromonomers polymerized faster than the shorter ones within the same monomer class. The OEO side chain at the α (i.e., 2-) position of isomeric acrylates significantly slowed RAFT polymerization in comparison with OEO ester side chain of methacrylates.  相似文献   

8.
Highly efficient syntheses of poly(alkyl methacrylate)-based brush polymers were accomplished via a facile group transfer polymerization (GTP) and a consecutive grafting-through ring-opening metathesis polymerization. The GTP system, composed of the norbornenyl-methyl trimethylsilyl ketene acetal initiator and the N-(trimethylsilyl) bis(trifluoromethanesulfonyl)imide catalyst, rapidly and quantitatively generates norbornenyl-terminated poly(alkyl methacrylate) macromonomers with very narrow polydispersities (Mw/Mn < 1.10). The ring-opening metathesis polymerization of methacrylate macromonomers using Grubbs third generation catalyst successfully generated a group of methacrylate-based brush polymers, which assured the high quality of the macromonomers obtained from GTP.  相似文献   

9.
The star-shaped poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (HPs-Star-PCL-b-PDMAEMA) was synthesized by ring-opening polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization. Star-shaped polycaprolactones (HPs-Star-PCL) were synthesized by the bulk polymerization of ε-caprolactone (CL) with a hyperbranched polyester initiator and tin 2-ethylhexanoate as a catalyst. The number-average molecular weight of these polymers linearly increased with the increase of the molar ratio of CL to hyperbranched initiator. HPs-Star-PCL was converted into a HPs-star-PCL-RAFT by an esterification of HPs-Star-PCL and 4-cyanopentanoic acid dithiobenzoate. Star amphiphilic block copolymer HPs-Star-PCL-b-PDMAEMA was obtained via RAFT polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). The molecular weight distribution of HPs-Star-PCL-b-PDMAEMA was narrow. Furthermore, the micellar properties of HPs-Star-PCL-b-PDMAEMA in water were studied at various temperatures and pH values by means of dynamic light scattering (DLS). The results indicated that the star copolymers had the pH- and temperature-responsive properties. The release behaviors of model drug aspirin from the star polymer indicated that the rate of drug release could be effectively controlled by pH value and temperature.  相似文献   

10.
The constant progress of the anionic polymerization of (meth)acrylates is discussed from both the fundamental and practical points of view. A special attention is paid to the improved macromolecular engineering of (meth)acrylate‐based (co)polymers. The resulting most important materials and the scaling‐up process needed for their production are also emphasized. The recent developments witness for the healthy state of the anionic polymerization of these polar monomers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1–10, 1999  相似文献   

11.
New graft copolymers of β‐pinene with methyl methacrylate (MMA) or butyl acrylate (BA) were synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). β‐Pinene polymers with predetermined molecular weights and narrow molecular weight distributions (MWDs) were prepared by living cationic polymerization with the 1‐phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, and the resultant polymers were brominated quantitatively by N‐bromosuccinamide in the presence of azobisisobutyronitrile, yielding poly(β‐pinene) macroinitiators with different bromine contents (Br/β‐pinene unit molar ratio = 1.0 and 0.5 for macroinitiators a and b , respectively). The macroinitiators, in conjunction with CuBr and 2,2′‐bipyridine, were used to initiate ATRP of BA or MMA. With macroinitiator a or b , the bulk polymerization of BA induced a linear first‐order kinetic plot and gave graft copolymers with controlled molecular weights and MWDs; this indicated the living nature of these polymerizations. The bulk polymerization of MMA initiated with macroinitiator a was completed instantaneously and induced insoluble gel products. However, the controlled polymerization of MMA was achieved with macroinitiator b in toluene and resulted in the desired graft copolymers with controlled molecular weights and MWDs. The structures of the obtained graft copolymers of β‐pinene with (methyl)methacrylate were confirmed by 1H NMR spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1237–1242, 2003  相似文献   

12.
Well-defined AB(BA), ABA, and BAB block copolymers of tert-butyl methacrylate (tBMA) (A) and ethylene oxide (EO) (B) have been prepared by sequential living anionic polymerization of the two comonomers, irrespective of their addition order. Diphenyl methyl potassium and naphthalene potassium have been successfully used as mono- and difunctional initiators, respectively. In all cases, molecular weight and composition of the block copolymers can be predicted on the basis of the monomer over initiator molar ratio, and the molecular weight distribution is relatively narrow. Size exclusion chromatography, selective extractions of homopolymers, and 1H- and 13C-NMR spectroscopy support that block copolymerization proceeds without homopolymer formation nor side reactions, e.g., transesterification reactions. The PtBMA blocks have been quantitatively hydrolyzed into polyacid ones with formation of polyacid-b-polyether block copolymers as supported by titration, 1H-NMR, and IR analysis. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
In this work, the successful application of atom transfer radical polymerization (ATRP) to cardanyl acrylate, a polymerizable monomer derived from a renewable resource cardanol, is reported. Polycardanyl acrylate and poly(methylmethacrylate)‐cardanyl acrylate copolymers were prepared in bulk ATRP, using Copper(I) bromide/N, N, N′, N′, N″‐pentamethyl diethylene triamine (PMDETA) catalyst system at 95 °C in combination with ethyl‐2‐bromo isobutyrate initiator. The copolymers had mol. wt. (Mn) in the range 8300–2400 g/mol and polydispersity index (PDI) 1.27–2.00, depending upon the [M]0/[I]0 ratio. 1H NMR analysis of the copolymer showed that unsaturation in the side chain of cardanyl acrylate is unaffected under the conditions of ATRP. This was further confirmed by studying the curing reaction of polycardanyl acrylate by supported dynamic mechanical thermal analysis (DMTA) in dual cantilever mode. The thermogravimetric analysis shows that the copolymers have improved thermal stability, by about 35 °C, in comparison with pure PMMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5953–5961, 2005  相似文献   

14.
N-(Ethylene)phthalimidyl acrylate was synthesized starting from phthalimide or phthalic anhydride using two different routes. Free radical or anionic polymerization of the ester resulted in low-molecular-weight polymers.  相似文献   

15.
Ethyl acrylate (E)/methyl methacrylate (M) copolymers of different compositions were prepared, and their compositions were determined with 1H NMR spectra. The complete spectral assignments, in terms of the compositional and configurational sequences of these copolymers, were made with the help of distortionless enhancement by polarization transfer and two‐dimensional heteronuclear single quantum coherence spectroscopy. The α‐(CH3)M, ? CH (E), ? CH2, and 〉C?O carbons of both M and E units were found to be sensitive to various compositional and configurational sequences. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 313–326, 2003  相似文献   

16.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

17.
A novel polymer matrix containing amino–nitro substituted azobenzene groups was obtained by frontal polymerization. (E)‐2‐(Ethyl(4‐((4‐nitrophenyl)diazenyl)phenyl)amino)ethyl methacrylate (MDR‐1) was copolymerized with poly(ethylene glycol) diacrylate (PEGDA) using this easy and fast polymerization technique. The effect of the amount of the incorporated azo‐monomer into the polymer matrix was studied in detail and correlated to front velocity, maximum temperature, initiator concentration, and monomer conversion. The obtained materials were characterized by infrared spectroscopy (Fourier transform infrared), and their thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. Moreover, the optical properties of the polymers were studied by absorption spectroscopy in the UV–Vis region. Absorption spectra of the copolymers exhibit a significant blue shift of the absorption bands with respect to the azo‐monomer, due to the presence of H‐aggregates. Cubic nonlinear optical (NLO) characterizations of the PEGDA/MDR‐1 copolymers were performed according to the Z‐Scan technique. It has been proven that samples with higher MDR‐1 content (0.75 mol %) exhibited outstandingly high NLO‐activity with negative NLO‐refractive coefficients in the promising range of n2 = ?8.057 × 10?4 esu. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Self assembly of block copolymers has gained considerable attention because of its potential use in various areas such as medical and biomedical applications, nanotechnology, and electronics. Herein, we present the synthesis and characterization of amphiphilic block‐random copolymers with a covalently incorporated pH‐sensitive dye, namely eosin. Ring opening metathesis polymerization was chosen for the preparation of well defined block copolymers and block‐random copolymers using a modified “2nd Generation Grubbs” initiator. The self assembly behavior of the block‐random copolymers in solution was studied by dynamic light scattering and small angle X‐ray scattering (SAXS). The influence of dye incorporation on the result of the self assembly process in methanol and ethanol was investigated and a subtle interplay of the nature of the selective solvent, the chain‐length of the block copolymer and the position of the dye within the polymer chain was established. Structural investigations using SAXS revealed a spherical shape and a core‐shell structure of exemplary block and block‐random copolymer micelles. UV–vis absorption and photoluminescence measurements revealed similar optical properties for polymer micelles in methanol compared to polymer solutions in THF. The pH‐sensitive behavior of the eosin dye was preserved within the micelles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 401–413, 2008  相似文献   

19.
Copper(I)-mediated living radical polymerization was used to synthesize a series of self-crosslinkable ABA triblock copolymers in which the side blocks are formed by a monomer supporting a reactive functional group, as allyl methacrylate (AMA). The copolymers were prepared according with a two steps synthetic methodology. In the first step, ,ω-dibromo homopolymers of polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA) were synthesized by atom transfer radical polymerization (ATRP). In the second step, these telechelic polymers were employed as macroinitiators for the ATRP of AMA in benzonitrile solution at 70 °C with CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system in order to obtain well-defined functionalized triblock copolymers. The living nature of the block copolymerizations involved was investigated in each case and a similar general behaviour was found. Thus, the molecular weights increased fairly linearly with the conversion degree with first-order kinetics in respect of monomer until moderate conversions, where secondary reactions become more relevant. Finally, intermacromolecular crosslinking were observed giving macrogels as a unique reaction product. The polymers were characterized by different characterization techniques, such as size exclusion chromatography (SEC), 1H NMR spectroscopy and differential scanning calorimetry (DSC). In addition, the facile thermal crosslinking of these block copolymers was evaluated from rheological measurements.  相似文献   

20.
In order to obtain functional polymer latex particles with clean surface and with surface carboxyl groups, P(MMA-EA) seed particles with the diameter of 335 nm were first synthesized via soap-free batch emulsion polymerization of methyl methacrylate (MMA) and ethyl acrylate (EA), and then the seeded emulsion copolymerization of MMA, EA and MAA (methacrylic acid) onto the seed particles were performed in the absence of emulsifier. Influences of ingredients and conditions on polymerization, latex particle size (Dp) and its distribution were investigated. Results showed that most of the monomers polymerized onto the seed latex particles in the second step of polymerization by using drop-wise addition method, and Dp increased from 483 nm to 829 nm with the mass ratio of core/shell monomers [C]/[S] decreased from 1:2 to 1:15. It was found that Dp decreased with the increase of MAA and initiator amounts, and the size of the latex particles became uniform with the decrease of MAA amount and with the increase of [C]/[S] value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号