首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol is shown to act as a hydrogenating agent for ynamides under palladium catalysis. This behavior is different from the normally expected reaction of ethanol addition to alkynes. The reaction shows stereoselectivity for E enamides, which is in contrast to reports using other hydrogenating sources. The method was also extended to ynamines. Alternatively, the use of ethanol and ammonium formate as the hydrogenating source gives Z enamides. The role of ethanol in hydrogenation was demonstrated by means deuterium labeling experiment.  相似文献   

2.
Direct C? H functionalization of various enamides and enecarbamates was realized through visible‐light photoredox catalyzed reactions. Under the optimized conditions using [Ir(ppy)2(dtbbpy)PF6] as photocatalyst in combination with Na2HPO4, enamides such as N‐vinylpyrrolidinone could be easily functionalized by irradiation of the reaction mixture overnight in acetonitrile with visible light. The scope of the reaction with respect to enamide and enecarbamate substrates by using diethyl 2‐bromomalonate for the alkylation reaction was explored, followed by an investigation of the scope of alkylating reagents used to react with the enamides and enecarbamates. The results indicated that reaction takes place with quite broad substrate scope, however, tertiary enamides with an internal C?C double bond in the E configuration could not be alkylated. Alkylation of N‐vinyl tertiary enamides and enecarbamates gave monoalkylated products exclusively in the E configuration. Alkylation of N‐vinyl secondary enamides gave doubly alkylated products. Double bond migration was observed in the reaction of electron‐deficient bromides such as 3‐bromoacetyl acetate with N‐vinylpyrrolidinone. A mechanism is proposed for the reaction that is different from reported reactions of SOMOphiles with a nonfunctionalized C?C double bond. Further tests on the trifluoromethylation and arylation of enamides and enecarbamates under similar conditions showed that the reactions could serve as a mild, practical, and environmentally friendly approach to various functionalized enamides and enecarbamates.  相似文献   

3.
N-Fluoroalkylated 1,2,3-triazoles in the presence of triflic acid or fluorosulfonic acid underwent a cascade reaction consisting of triazole protonation, ring opening, nitrogen elimination, sulfonate addition, HF elimination, and hydrolysis to furnish novel trifluoromethanesulfonyloxy- or fluorosulfonyloxy-substituted enamides, respectively, in a highly stereoselective fashion. The vinyl triflates underwent cross-coupling reactions to a variety of substituted enamides and serve as sources of the aminovinyl cations. In reactions with triflic acid, electron-rich triazoles afforded 2-fluoroalkylated oxazoles.  相似文献   

4.
N-acyl amino acid esters are easily accessible from enamides by cobalt-catalyzed hydroalkoxycarbonylation in moderate to excellent yield. An important reaction parameter for selective carbonylation is the use of low hydrogen partial pressure, which prevents hydrogenation as a side reaction. The reported method is applicable to various enamides and alcohols. A DFT calculation of the catalytic cycle explains the preferred pathway of this reaction.  相似文献   

5.
A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C2-symmetric phosphorus ligand is designed.  相似文献   

6.
A stereoselective synthesis of isoindolo[2,1-a]quinolin-11(5H)-ones containing three contiguous stereogenic centers is described. This Lewis-acid mediated reaction of enamides with N-aryl-acylimines affords the desired fused heterocyclic isoindolinones in high yields and diastereoselectivities. Scope and limitations of this method are discussed. The stereochemical outcome of this transformation indicates a stepwise reaction pathway.  相似文献   

7.
Reaction of aromatic amines with tertiary enamides was performed in n-hexane in the presence of acetic acid as an inexpensive and green catalyst at room temperature. This protocol provides the protected aminals through Markovnikov addition reaction with high to excellent yields and regiospecificity. In addition, this procedure was expanded for the synthesis of aminals from commercially available sulfa drugs such as sulfathiazole and sulfabenzamide.  相似文献   

8.
1-Aroyl-4,5-dihydro-5-methylene-1H-pyrazoles 1 are converted upon oxidation with m-chloroperbenzoic acid to the pyrazolones 2 . The same aroyl enamides 1 are also oxidized with LTA to form the acetoxy derivatives 7 and 8 . The reaction mechanisms are discussed.  相似文献   

9.
A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition‐metal‐catalyzed reactions with well‐defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh‐catalyzed asymmetric hydrogenation of (E )‐β‐aryl‐N ‐acetyl enamides, for which a new C 2‐symmetric phosphorus ligand is designed.  相似文献   

10.
The rhodium‐catalyzed asymmetric hydrogenation of different enamides, in particular, dihydro‐β‐carboline derivates, was investigated in the presence of chiral phosphorus ligands. Enantioselectivities of up to 99 % ee were obtained after ligand screening and optimization of the reaction conditions. The scope and limitation of the catalysts were shown in the synthesis of optically active tetrahydro‐β‐carbolines and other benchmark N‐acyl‐1‐aryl ethylamines.  相似文献   

11.
A convenient method for the synthesis of magnetically recyclable palladium nanoparticles (Fe3O4‐Pd) is described. The catalytic application of the Fe3O4‐Pd nanoparticles was explored for the first time in oxidative coupling between amides and olefins. p‐Toluenesulfonic acid plays a significant role in the oxidative amidation reaction. The reaction proceeds at room temperature, resulting in (Z)‐enamides under ambient air in the absence of co‐catalyst and ligand. The superparamagnetic nature of Fe3O4‐Pd facilitates easy, quantitative recovery of the catalyst from a reaction mixture, and it can be reused for up to three consecutive cycles with a slight decrease in catalytic activity.  相似文献   

12.
B. Gangadasu 《Tetrahedron》2006,62(35):8398-8403
Eleven enamides were prepared by adopting different procedures. The various enamides prepared were subjected to Vilsmeier reaction using (i) POCl3/DMF; (ii) diphosgene/DMF; (iii) triphosgene/DMF leading to the formation of various multisubstituted chloronicotinaldehydes. Studies carried out indicate that Vilsmeier reagent concentration and the replacement of POCl3 by diphosgene or triphosgene, provides excellent selectivity and higher yields. Under modified reaction conditions one can get only chloronicotinaldehydes and not the chloropyridines as products. The various advantages in using diphosgene and triphosgene are illustrated. The mechanism of formation of chloronicotinaldehyde was discussed.  相似文献   

13.
Efficient methods for the dicarbofuntionalization of the cyclic alkenes 2-pyrroline and 2-azetine are limited. Particularly, the dicarbofunctionalization of endocyclic enecarbamates to achieve fluorinated compounds remains an unsolved issue. Reported here is a nickel-catalyzed trans-selective dicarbofunctionalization of N-Boc-2-pyrroline and N-Boc-2-azetine, a class of endocyclic enecarbamates previously unexplored for transition metal catalyzed dicarbofunctionalization. The reaction can be extended to six- and seven-membered endocyclic enamides. A variety of arylzinc reagents and bromodifluoroacetate, and its derivatives, undergo the reaction, providing straightforward and efficient access to an array of pyrrolidine- and azetidine-containing fluorinated amino acids and oligopeptides, which may have applications in the life sciences.  相似文献   

14.
Using the diphosphine-cobalt-zinc catalytic system, an efficient asymmetric hydrogenation of internal simple enamides has been realized. In particular, the Ph-BPE ligand can achieve convergent asymmetric hydrogenation of E/Z-substrates. High yields and excellent enantioselectivities were obtained for both acyclic and cyclic enamides bearing α-alkyl-β-aryl, α-aryl-β-aryl, and α-aryl-β-alkyl substituents. Hydrogenated products can be applied for the synthesis of useful chiral drugs such as Arfromoterol, Rotigotine, and Norsertraline. In addition, reasonable catalytic mechanism and stereocontrol mode are proposed based on DFT calculations.  相似文献   

15.
The reactivity of stable tertiary enamides in nucleophilic addition reaction with various in-situ generated imines was explored. Under very mild conditions, formyl-bearing tertiary enamides reacted with both aromatic and aliphatic amines to form imine intermediates. In the absence or presence of p-toluenesulfonic acid as a catalyst, intramolecular nucleophilic addition of enamide to imine functionality proceeded effectively to produce diverse 4-amino-1,2,3,4-tetrahydropyridine derivatives in good to excellent yields.  相似文献   

16.
We report in this article a cascade reaction strategy for the synthesis of complex N-heterocyclic compounds with contiguous and tetrasubstituted stereogenic carbons. Under the sequential catalysis of a chiral binol–Ti complex and BF3, cyclopentanone-derived tertiary enamides undergo an enantioselective enamine addition to ketone carbonyls followed by diastereoselective trapping of the resulting acyliminiums by electron-rich aryl moieties to furnish four- and five-membered ring-fused N-heterocyclic products as the sole diastereomers in high yields with up to 99 % ee.  相似文献   

17.
Intramolecular atropselective aza Paternò–Büchi reaction involving atropisomeric enamide and imine functionalities under sensitized irradiation leads to azetidine products in good yield and selectivity (ee >96 %). A mechanistic model based on detailed photophysical and isomerization kinetic studies is provided that shed light into the reactivity of enamides leading to aza Paternò–Büchi reaction.  相似文献   

18.
Carbophilic gold carbenes generated from the decomposition of α‐diazoesters show high reactivity towards enamides, leading to an unprecedented aza‐ene‐type reaction. The presence of 0.1 mol % of a chiral Brønsted acid co‐catalyst is sufficient to give synthetically relevant γ‐keto esters in excellent yields and selectivities (up to 99 % yield, 97 % ee ).  相似文献   

19.
The asymmetric addition of terminal ynamides to trifluoromethyl ketones with a readily available chiral zinc catalyst gives CF3‐substituted tertiary propargylic alcohols in up to 99 % yield and 96 % ee. The exclusion of organozinc additives and base as well as the general synthetic utility of the products are key features of this reaction. The value of the β‐hydroxy‐β‐trifluoromethyl ynamides is exemplified by selective transformations to chiral Z‐ and E‐enamides, an amide, and N,O‐ketene acetals. The highly regioselective hydration, stereoselective reduction, and hydroacyloxylation reactions proceed with high yields and without erosion of the ee value of the parent β‐hydroxy ynamides.  相似文献   

20.
Intramolecular atropselective aza Paternò–Büchi reaction involving atropisomeric enamide and imine functionalities under sensitized irradiation leads to azetidine products in good yield and selectivity (ee >96 %). A mechanistic model based on detailed photophysical and isomerization kinetic studies is provided that shed light into the reactivity of enamides leading to aza Paternò–Büchi reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号