首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C‐Glycosides are carbohydrates that bear a C?C bond to an aglycon at the anomeric center. Due to their high stability towards chemical and enzymatic hydrolysis, these compounds are widely used as carbohydrate mimics in drug development. Herein, we report a general and exclusively β‐selective method for the synthesis of a naturally abundant acyl‐C‐glycosidic structural motif first found in the scleropentaside natural product family. A Corey–Seebach umpolung reaction as the key step in the synthesis of scleropentaside A and analogues enables the β‐selective construction of the anomeric C?C bond starting from unprotected carbohydrates in only four steps. The one‐pot approach is highly atom‐efficient and avoids the use of toxic heavy metals.  相似文献   

2.
Since umpolung α‐imino esters contain three electrophilic centers, regioselective alkyl addition with traditional organometallic reagents has been a serious problem in the practical synthesis of versatile chiral α‐amino acid derivatives. An unusual C‐alkyl addition to α‐imino esters using a Grignard reagent (RMgX)‐derived zinc(II)ate was developed. Zinc(II)ate complexes consist of a Lewis acidic [MgX]+ moiety, a nucleophilic [R3Zn]? moiety, and 2 [MgX2]. Therefore, the ionically separated [R3Zn]? selectively attacks the imino carbon atom ,which is most strongly activated by chelation of [MgX]+. In particular, chiral β,γ‐alkynyl‐α‐imino esters can strongly promote highly regio‐ and diastereoselective C‐alkylation because of structural considerations, and the corresponding optically active α‐quaternary amino acid derivatives are obtained within 5 minutes in high to excellent yields.  相似文献   

3.
Presented herein is the first direct alkylation and hydroxylation reaction between two different C(sp3)?H bonds, indolin‐2‐ones and alkyl‐substituted N‐heteroarenes, through an oxidative cross‐coupling reaction. The reaction is catalyzed by a simple iron salt under mild ligand‐free and base‐free conditions. The reaction is environmentally benign, employs air (molecular oxygen) as the terminal oxidant and oxygen source for the synthesis of O‐containing compounds, and produces only water as the byproduct.  相似文献   

4.
An effective catalytic system that imparts high enantioselectivity has been disclosed for the synthesis of optically active alcohols, which may undergo further chemical transformations. The enantioselective alkylation of aldehydes with dialkylzincs to afford the corresponding optically active alcohols with excellent enantioselectvities has been achieved in the presence of 0.1–0.5 mol % of the camphor‐derived chiral ligand (?)‐2‐exo‐morpholinoisobornane‐10‐thiol (MITH) ( 1 ) at room temperature or at 0 °C.  相似文献   

5.
Thermal decomposition of four tertiary N‐(2‐methylpropyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (SG1)‐based alkoxyamines (SG1‐C(Me)2‐C(O)‐OR, R = Me, tBu, Et, H) has been studied at different experimental conditions using 1H and 31P NMR spectroscopies. This experiment represents the initiating step of methyl methacrylate polymerization. It has been shown that H‐transfer reaction occurs during the decomposition of three alkoxyamines in highly degassed solution, whereas no products of H‐transfer are detected during decomposition of SG1‐MAMA alkoxyamine. The value of the rate constant of H‐transfer for alkoxyamines 1 (SG1‐C(Me)2‐C(O)‐OMe) and 2 ( SG1‐C(Me)2‐C(O)‐OtBu) has been estimated as 1.7 × 103 M?1s?1. The high influence of oxygen on decomposition mechanism is found. In particular, in poorly degassed solutions, nearly quantitative formation of oxidation product has been observed, whereas at residual pressure of 10?5 mbar, the main products originate from H‐atom transfer reaction. The acidity of the reaction medium affects the decomposition mechanism suppressing the H‐atom transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Biotransformation is the structural modification of compounds using enzymes as the catalysts and it plays a key role in the synthesis of pharmaceutically important compounds. 10β,17β‐Dihydroxy‐17α‐methylestr‐4‐en‐3‐one dihydrate, C19H28O3·2H2O, was obtained from the fungal biotransformation of methyloestrenolone. The structure was refined using the classical independent atom model (IAM) and a transferred multipolar atom model using the ELMAM2 database. The results from the two refinements have been compared. The ELMAM2 refinement has been found to be superior in terms of the refinement statistics. It has been shown that certain electron‐density‐derived properties can be calculated on the basis of the transferred parameters for crystals which diffract to ordinary resolution.  相似文献   

7.
The development of new hydrogen‐atom transfer (HAT) strategies within the framework of photoredox catalysis is highly appealing for its power to activate a desired C−H bond in the substrate leading to its selective functionalization. Reported here is the first photoredox‐mediated hydrogen‐atom transfer method for the efficient synthesis of ynones, ynamides, and ynoates with high regio‐ and chemoselectivity by direct functionalization of C (O)−H bonds. The broad synthetic application of this method has been demonstrated by the selective functionalization of C(O)−H bonds within complex molecular scaffolds.  相似文献   

8.
The “click chemistry” of using organic azides and terminal alkynes is arguably the most efficient and straightforward route to the synthesis of 1,2,3‐triazoles. In this paper, an alternative and direct access to ethyl 1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐1,2,3‐triazole‐4‐carboxylate is described. Treatment of ethyl diazoacetate with 4‐methoxyaniline derived aryl imines in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene provided fully substituted 1,2,3‐triazoles in good to high chemical yields. The base‐mediated reaction tolerates various substituted phenyl imines as well as ethyl diazoacetate or the more bulky diazoacetamide. A reasonable mechanism is proposed that involves the addition of an imine nitrogen atom to the terminal nitrogen atom of the diazo compound, followed by aromatization to give the 1,2,3‐triazole. The presence of the 4‐carboxy group is advantageous as it can be easily transformed into other functional groups.  相似文献   

9.
《化学:亚洲杂志》2018,13(18):2664-2670
A straightforward Lewis acid‐promoted protocol for 3,3′‐bisindolylmethanes (BIMs) synthesis by reductive alkylation of indoles at the C3 position with carboxylic acids in the presence of hydrosilane was developed for the first time. Instead of aldehydes, more readily available, stable, and easy‐to‐handle carboxylic acids have been employed as alternative alkylating agents. As an efficient organocatalyst, B(C6F5)3 enables the reductive alkylation of various substituted indole derivatives with carboxylic acids with up to 98 % yield at room temperature and under neat conditions. This metal‐free strategy offers an alternative approach for the direct functionalization of indoles to BIMs with carboxylic acids and such protocol allows selective reduction of carboxylic acid to aldehyde in combination with C−C bond formation.  相似文献   

10.
Substituted benzoic acid and cinnamic acid esters are of interest as tyrosinase inhibitors and the development of such inhibitors may help in diminishing many dermatological disorders. The tyrosinase enzyme has also been linked to Parkinson's disease. In view of hydroxylated compounds having ester and amide functionalities to potentially inhibit tyrosinase, we herein report the synthesis and crystal structures of two amide‐based derivatives, namely N‐(4‐acetylphenyl)‐2‐chloroacetamide, C10H10ClNO2, (I), and 2‐(4‐acetylanilino)‐2‐oxoethyl cinnamate, C19H17NO4, (II). In compound (I), the acetylphenyl ring and the N—(C=O)—C unit of the acetamide group are almost coplanar, with a dihedral angle of 7.39 (18)°. Instead of esterification, a cheaper and more efficient synthetic method has been developed for the preparation of compound (II). The molecular geometry of compound (II) is a V‐shape. The acetamide and cinnamate groups are almost planar, with mean deviations of 0.088 and 0.046 Å, respectively; the dihedral angle between these groups is 77.39 (7)°. The carbonyl O atoms are positioned syn and anti to the amide carbonyl O atom. In the crystals of (I) and (II), N—H…O, C—H…O and C—H…π interactions link the molecules into a three‐dimensional network.  相似文献   

11.
A highly enantioselective synthesis of δ‐lactams having a chiral quaternary carbon center at the α‐position has been developed through an asymmetric alkylation of 3‐arylpiperidin‐2‐ones under phase‐transfer conditions. In this transformation, a 2,2‐diarylvinyl group on the δ‐lactam nitrogen atom plays a crucial role as a novel protecting group and an achiral auxiliary for improving both yield and enantioselectivity of the reaction.  相似文献   

12.
Herein, we describe an intermolecular direct branched‐selective α‐alkylation of cyclic ketones with simple alkenes as the alkylation agents. Through an enamine‐transition metal cooperative catalysis mode, the α‐alkylation is realized in an atom‐ and step‐economic manner with excellent branched selectivity for preparing β‐branched ketones. Employment of a pair of bulky Brønsted acid and base as additives is responsible for enhanced efficiency. Promising enantioselectivity (74 % ee) has been obtained. Experimental and computational mechanistic studies suggest that a pathway through alkene migratory insertion into the Ir?C bond followed by C?H reductive elimination is involved for the high branched selectivity.  相似文献   

13.
On the basis of fundamental studies on elementary processes involving allyl−O and acyl−O bond cleavages, various new catalytic processes to convert carboxylic acid derivatives have been realized. The new processes include 1) carbonylation of allyl formates to β,γ‐unsaturated acids, 2) amination, alkylation, and carbonylation of allylic alcohols, 3) aldehyde synthesis by hydrogenation of carboxylic anhydrides and carboxylic acids, 4) ketone synthesis by combination of the C−O bond cleavage with transmetallation by organoboronic acids. The processes described here have advantages over the conventional ones in that they are more atom‐efficient and halogen‐free in realizing the syntheses of a variety of carbonyl‐containing compounds under mild conditions.  相似文献   

14.
In the course of the first of several attempts to elaborate methods for the synthesis of 1‐nitropiperidinoses, lincosamine was transformed into lactam 6 via hemiacetal 1 , lactone 2 , amide 3 , oxo amide 4 , and its cyclic tautomer 5 . Treatment of the N‐Boc‐protected lactam oxime 9 , obtained from lactam 6 , with brominating agents failed to provide the bromonitroso carbamate 10 . The N‐Boc‐protected lactam 13 derived from 6 was reduced to hemiacetal 14 , but the corresponding N‐Boc‐aminooxime did not tautomerise to the C(1)‐hydroxylamine, and nitrone 17 , a potential precursor of the nitropiperidine 12 , was not formed. Oxidation of the anomeric azide 20 with HOF?MeCN failed to provide the expected nitropiperidine 21 . The phosphinimines 22 derived from 20 did not react with O3. In the next approach to 1‐nitropiperidinoses, we treated the N‐Boc‐protected hemiacetal 25 , obtained from the known gluconolactam 23 with N‐benzylhydroxylamine. The resulting nitrone 26 exits in equilibrium with the anomeric N‐benzyl‐glycosylhydroxylamine that was oxidized to the anomeric nitrone 28 . Ozonolysis of 28 led to the hemiacetal 25 , resulting from the desired, highly reactive protected nitropiperidinose 29 , that was evidenced by an IR band at 1561 cm?1. Similarly to the synthesis of nitrone 26 , reaction of the N‐tosyl‐protected hemiacetal 31 with N‐benzylhydroxylamine and oxidation provided the anomeric N‐benzylhydroxylamines 33 via the p‐toluenesulfonamido nitrone 32 . Their oxidation with MnO2 led to the anomeric nitrone 34 . Ozonolysis of 34 as evidenced by 1H‐NMR and ReactIR spectroscopy led to the highly reactive nitropiperidinose 35 . Like 29, 35 was transformed during workup, and only the hemiacetal 31 was isolated. The similarly prepared lincosamine‐derived nitrone 17 was subjected to ReactIR‐monitored ozonolysis that evidenced the formation of the protected nitropiperidinose 12 , but only led to the isolation of 14 . The facile transformation of the nitropiperidinoses to hemiacetals is rationalised by heterolysis of the anomeric C,N bond, recombination of the ion pair, and denitrosation of the resulting anomeric nitrite by a nucleophile. Attempts to convert the 1‐deoxy‐1‐nitropiperidinose 35 to uloses 43 by base‐catalysed Michael additions or Henry reactions were unsuccessful.  相似文献   

15.
Oxygenation is a fundamental transformation in synthesis. Herein, we describe the selective late‐stage oxygenation of sulfur‐containing complex molecules with ground‐state oxygen under ambient conditions. The high oxidation potential of the active uranyl cation (UO22+) enabled the efficient synthesis of sulfones. The ligand‐to‐metal charge transfer process (LMCT) from O 2p to U 5f within the O=U=O group, which generates a UV center and an oxygen radical, is assumed to be affected by the solvent and additives, and can be tuned to promote selective sulfoxidation. This tunable strategy enabled the batch synthesis of 32 pharmaceuticals and analogues by late‐stage oxygenation in an atom‐ and step‐efficient manner.  相似文献   

16.
Orthophthalaldehyde (o‐phthalaldehyde, OPA) is an aromatic dialdehyde bearing two electron‐withdrawing carbonyl groups. The reactions of OPA with primary amines are broadly applied for the synthesis of important heterocyclic compounds with biological relevance. A number of such reactions have been investigated recently and several structures of condensation products have been reported, however, the complex reaction mechanism is still not fully understood and comprises concurrent as well as consecutive reactions. The reaction products depend on the primary amine which reacts with OPA, the reaction environment (solvent) and the proportion of the reactants. The title molecule, C11H13NO, the product of the reaction of OPA with isopropylamine, contains a five‐membered pyrrole C4N ring with a carbonyl substituent, which forms part of the isoindolinone unit. Though this pyrrole ring contains one C atom in the sp3‐hybridized state, it is fairly planar. The title molecule has been compared with similar structures retrieved from the Cambridge Structural Database in order to study this phenomenon. The planarity of this fragment has been explained by the presence of partially delocalized C—C, C—N and C—O bonds, and by an inner angle in the planar pentagonal ring (∼108°), which is close to the ideal tetrahedral value for the sp3‐hybridized state of the constituent C atom. Due to this propitious angle, this C atom can be present in states intermediate between sp3‐ and sp2‐hybridized in different structures, while still maintaining the planarity of the ring. There are only weak intermolecular C—H…O hydrogen bonds and C—H…π‐electron ring interactions in the structure. In particular, it is the pyrrole ring which is involved in these interactions.  相似文献   

17.
A practical approach has been developed to convert glucals and rhamnals into disaccharides or glycoconjugates with high α‐selectivity and yields (77–97 %) using a trans‐fused cyclic 3,4‐O‐disiloxane protecting group and TsOH?H2O (1 mol %) as a catalyst. Control of the anomeric selectivity arises from conformational locking of the intermediate oxacarbenium cation. Glucals outperform rhamnals because the C6 side‐chain conformation augments the selectivity.  相似文献   

18.
Acid‐catalyzed Friedel–Crafts alkylation of 1,3‐dicarbonyl compounds with electrophilic alcohols, is known to be an effective C? C bond forming reaction. However, until now, this reaction has not been amenable for α‐alkylation of aryl methyl ketones because of the notoriously low nucleophilicities of these compounds. Therefore, α‐alkylation of aryl methyl ketone relies on precious metal catalysts and also, the use of primary alcohols is mandatory. In this study, we found that a system composed of a Fe(OTf)3 catalyst and chlorobenzene solvent is sufficient to promote the title Friedel–Crafts reaction by using benzhydrols as electrophiles. 3,4‐Dihydro‐9‐(2‐hydroxy‐4,4‐dimethyl‐6‐oxo‐1‐cyclohexen‐1‐yl)‐3,3‐dimethyl‐xanthen‐1(2 H)‐one was also applicable as an electrophile in this type of benzylation reaction. On the basis of this result, a three‐component reaction of salicylaldehyde, dimedone, and aryl methyl ketone was also developed, and this provided an efficient way for the synthesis of densely substituted 4H‐chromene derivatives.  相似文献   

19.
An organocatalytic asymmetric synthesis of δ‐amino‐β‐ketoester derivatives has been developed. A chiral disulfonimide (DSI) serves as a highly efficient precatalyst for a vinylogous Mukaiyama–Mannich reaction of readily available dioxinone‐derived silyloxydienes with N‐Boc‐protected imines, delivering products in excellent yields and enantioselectivities. The synthetic utility of this reaction is illustrated in various transformations, including a new C? C bond‐forming reaction, which provide useful enantioenriched building blocks. The methodology is applied in a formal synthesis of (?)‐lasubin.  相似文献   

20.
The title compound, C13H24O11·4H2O, (I), crystallized from water, has an internal glycosidic linkage conformation having ϕ′ (O5Gal—C1Gal—O1Gal—C4All) = −96.40 (12)° and ψ′ (C1Gal—O1Gal—C4All—C5All) = −160.93 (10)°, where ring‐atom numbering conforms to the convention in which C1 denotes the anomeric C atom, C5 the ring atom bearing the exocyclic hydroxymethyl group, and C6 the exocyclic hydroxymethyl (CH2OH) C atom in the βGalp and βAllp residues. Internal linkage conformations in the crystal structures of the structurally related disaccharides methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], (II), and methyl β‐cellobioside [methyl β‐d ‐glucopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Ham & Williams (1970). Acta Cryst. B 26 , 1373–1383], (III), are characterized by ϕ′ = −88.4 (2)° and ψ′ = −161.3 (2)°, and ϕ′ = −91.1° and ψ′ = −160.7°, respectively. Inter‐residue hydrogen bonding is observed between O3Glc and O5Gal/Glc in the crystal structures of (II) and (III), suggesting a role in determining their preferred linkage conformations. An analogous inter‐residue hydrogen bond does not exist in (I) due to the axial orientation of O3All, yet its internal linkage conformation is very similar to those of (II) and (III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号