首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
In this work, we examined the synthesis of novel block (co)polymers by mechanistic transformation through anionic, cationic, and radical living polymerizations using terminal carbon–halogen bond as the dormant species. First, the direct halogenation of growing species in the living anionic polymerization of styrene was examined with CCl4 to form a carbon–halogen terminal, which can be employed as the dormant species for either living cationic or radical polymerization. The mechanistic transformation was then performed from living anionic polymerization into living cationic or radical polymerization using the obtained polymers as the macroinitiator with the SnCl4/n‐Bu4NCl or RuCp*Cl(PPh3)/Et3N initiating system, respectively. Finally, the combination of all the polymerizations allowed the synthesis block copolymers including unprecedented gradient block copolymers composed of styrene and p‐methylstyrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 465–473  相似文献   

2.
A novel synthetic strategy for the synthesis of graft copolymers is reported. Block copolymers containing segments with stable nitroxyl radicals side groups were first prepared by anionic polymerization, which were then used as a precursor for the subsequent nitroxide-mediated radical polymerization (NMRP) of styrene. This way, block–graft copolymers with polystyrene side chains grafted from one of the blocks were successfully synthesized in a controlled manner. In addition, block–graft copolymers with grafted polystyrene chains and a poly(tert-butyl methacrylate) block were subjected to hydrolysis to yield the corresponding amphiphilic polymers. The structures and the molecular weight characteristics of the polymers were characterized by spectral and chromatographic analyses. The surface morphology of thus obtained polymers was also investigated by microscopic techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 62–69  相似文献   

3.
Four kinds of functional polyethylene carrying thioester pendants were synthesized via ring‐opening metathesis polymerization (ROMP) of alkyl cyclopent‐3‐enecarbothioate catalyzed by a ruthenium‐based commercial catalyst and subsequent hydrogenation of the ROMP products (alkyl = ethyl, n‐butyl, n‐octyl, or n‐dodecyl). In these polymers the pendant alkyl thioester groups are precisely distributed along the backbone on every five methylene carbons. Chain structure, molecular weight and molecular weight distribution of the polymers were characterized by 1H and 13C NMR, and GPC. The ROMP reactions all reached high monomer conversions, and hydrogenation of the ROMP products were exhaustive. Thermal transitions and side chain crystallization behaviors of the polymer were investigated and characterized by DSC and TGA. Glass transition temperature and melting temperature of these polymers were higher than the counterparts containing ester pendants. TGA analysis indicated that all the thioester‐containing polymers exhibited moderate thermal stability, and the sulfur‐containing polymers show slightly lower thermal stability than their counterparts without sulfur. The new family of functionalized polyethylenes could be used as models of ethylene‐thioacrylate copolymers, and find applications as novel functional materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4027–4036  相似文献   

4.
Described herein is a comprehensive survey on the most recent advancements in polycarbodiimide synthetic methodologies, structure determination, property design, and self-assembly. In particular, the 15N-isotopic enrichment of polycarbodiimides is detailed along with the use of 15N NMR to identify the regioregularity and mechanism of chiroptical switching in polycarbodiimides. Furthermore, the new Ni(II) mediated “living” polymerization is explained along with its utilization in the incorporation of polycarbodiimides into block copolymers, graft copolymers, and star polymers. Finally, we review the recent discoveries focusing on the highly tunable self-assembly behaviors of polycarbodiimide homopolymers and copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2915–2934  相似文献   

5.
Fatty acid‐derived cyclooctenes, including n‐hexanoic acid ( M1 ), n‐octanoic acid ( M2 ), lauric acid ( M3 ), and palmitic acid ( M4 ), were prepared as monomers and polymerized by ring‐opening metathesis polymerization (ROMP) using Grubbs second‐generation catalyst ( G2 ). In all the cases, the regio‐irregular unsaturated polymers with pendent linear branches were obtained, which could be saturated by chemical hydrogenation with TSH/TPA in high conversion, yielding ethylene/vinyl ester copolymers with pendent linear branches on precisely every eighth backbone carbon. Both unsaturated and saturated polymers were amorphous, and their structures were characterized by FTIR, 1H and 13C NMR spectra, and elemental analysis. Differential scanning calorimetry (DSC) and thermo‐gravimetric analysis (TGA) were used to study their thermal properties. The chain length of branches greatly affected the thermal properties of polymers. After hydrogenation, the thermal degradation stability of polymers was relatively improved. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2211–2220  相似文献   

6.
Biodegradable and amphiphilic diblock copolymers [polylactide-block-poly(ethylene glycol)] and triblock copolymers [polylactide-block-poly(ethylene glycol)-block-polylactide] were synthesized by the anionic ring-opening polymerization of lactides in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. The polymerization in toluene at room temperature was very fast, yielding copolymers of controlled molecular weights and tailored molecular architectures. The chemical structure of the copolymers was investigated with 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and differential scanning calorimetry investigations. The monomodal profile of the molecular weight distribution by gel permeation chromatography provided further evidence of block copolymer formation as well as the absence of cyclic species. Additional confirmation of the block copolymers was obtained by the substitution of 2-butanol for poly(ethylene glycol); butyl groups were clearly identified by 1H NMR as polymer chain end groups. The effects of the copolymer composition and lactide stereochemistry on the copolymer properties were examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2235–2245, 2007  相似文献   

7.
To simplify processes to produce self-assembled nanostructures from polymeric materials, there have been several attempts for in situ self-assembly of block copolymers. As one of these strategies, we developed the in situ nanoparticlization of conjugated polymers (INCP) process to construct various stable nanostructures without postsynthetic treatments. To get spontaneous mesoscopic evolution of the nanostructures obtained by INCP, a new strategy utilizing a unique conformational change of the conjugated polymer is reported herein. The combination of living ring-opening olefin metathesis polymerization (ROMP) and cyclopolymerization produced block and gradient copolymers through one-pot or one-shot polymerization, which initially formed spherical micelles via INCP. Then, the core block of the micelle stiffened through a coil-to-rod conformational change by simple aging in organic solvents because of cis-to-trans isomerization of the conjugated polymer under light. Subsequently, this enhanced the π-π interaction among the cores, and eventually promoted the growth of stable nanostructures from spheres to 1D-nanocaterpillars or 2D-sheet-like architectures. This time-dependent macroscopic evolution provides deeper insight into the production of a variety of kinetically fixed nano- and mesoscale structures through INCP. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3058–3066  相似文献   

8.
Polyamide 12,T–polyamide‐6 (PA‐12,T–PA‐6) block copolymers were synthesized by anionic polymerization of caprolactam using a PA‐12,T macrocoinitiator (McI). PA‐12,T McI and its precursors are soluble in molten caprolactam allowing for both the McI step‐growth polymerization and anionic polymerization to be performed in one‐pot. It was found that the competing reaction rates of caprolactam ring‐opening polymerization and McI transamidation are both deterred by a common ion effect using CaCl2 and soluble materials were obtained using >1 mol % CaCl2. Without CaCl2, the reaction mixture solidifies in less than 30 s and produces crosslinked materials. To understand this effect, PA‐12,T McI reactions with caprolactam were performed with 1–10 mol % CaCl2, and polymer structures were characterized using 13C NMR and dilute solution viscometry. These data were then correlated with unique thermal properties and swelling behavior of the block copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A series of narrow molecular weight distribution (MWD) polystyrene‐b‐poly[methyl(3,3,3‐trifluoropropyl)siloxane] (PS‐b‐PMTFPS) diblock copolymers were synthesized by the sequential anionic polymerization of styrene and trans‐1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane in tetrahydrofuran (THF) with n‐butyllithium as the initiator. The diblock copolymers had narrow MWDs ranging from 1.06 to 1.20 and number‐average molecular weights ranging from 8.2 × 103 to 37.1 × 103. To investigate the properties of the copolymers, diblock copolymers with different weight fractions of poly[methyl(3,3,3‐trifluoropropyl)siloxane] (15.4–78.8 wt %) were prepared. The compositions of the diblock copolymers were calculated from the characteristic proton integrals of 1H NMR spectra. For the anionic ring‐opening polymerization (ROP) of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3) initiated by polystyryllithium, high monomer concentrations could give high polymer yields and good control of MWDs when THF was used as the polymerization solvent. It was speculated that good control of the block copolymerization under the condition of high monomer concentrations was due to the slowdown of the anionic ROP rate of F3 and the steric hindrance of the polystyrene precursors. There was enough time to terminate the ROP of F3 when the polymer yield was high, and good control of block copolymerization could be achieved thereafter. The thermal properties (differential scanning calorimetry and thermogravimetric analysis) were also investigated for the PS‐b‐PMTFPS diblock copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4431–4438, 2005  相似文献   

10.
Linear and symmetric star block copolymers of styrene and isoprene containing [C60] fullerene were synthesized by anionic polymerization and appropriate linking postpolymerization chemistry. In all block copolymers, the C60 was connected to the terminal polyisoprene (PI) block. The composition of the copolymers was kept constant (~30% wt PI), whereas the molecular weight of the diblock chains was varied. The polymers were characterized with a number of techniques, including size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy. The combined characterization results showed that the synthetic procedures followed led to well‐defined materials. However, degradation of the fractionated star‐shaped copolymers was observed after storage for 2 months at 4 °C, whereas the nonfractionated material was stable. To further elucidate the reasons for this degradation, we prepared and studied a four‐arm star copolymer with the polystyrene part connected to C60 and a six‐arm star homopolymer of styrene. These polymers as well as linear copolymers end‐capped, through ? N<, with C60 were stable. Possible reasons are discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2494–2507, 2001  相似文献   

11.
A versatile strategy for the preparation of end‐functional polymers and block copolymers by radical exchange reactions is described. For this purpose, first polystyrene with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group (PS‐TEMPO) is prepared by nitroxide‐mediated radical polymerization (NMRP). In the subsequent step, these polymers are heated to 130 °C in the presence of independently prepared TEMPO derivatives bearing hydroxyl, azide and carboxylic acid functionalities, and polymers such as poly(ethylene glycol) (TEMPO‐PEG) and poly(ε‐caprolactone) (TEMPO‐PCL). Due to the simultaneous radical generation and reversible termination of the polymer radical, TEMPO moiety on polystyrene is replaced to form the corresponding end‐functional polymers and block copolymers. The intermediates and final polymers are characterized by 1H NMR, UV, IR, and GPC measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2387–2395  相似文献   

12.
Anionic polymerization techniques have been implemented successfully in a commercial automated synthesizer. The main problems for a successful adaptation of the experimental technique in the automated synthesizer are addressed, as well as some simple potential applications, such as the anionic polymerization of styrene, isoprene, and methyl methacrylate. The obtained results were reproducible and in concordance with literature knowledge. The apparent rate constant of the anionic polymerization of styrene in cyclohexane initiated by sec‐butyllithium could be determined at two different concentrations of the monomer and initiator in a temperature range of 10–60 °C. All the synthesis and characterization experiments of the polymers were performed within a short time period. Moreover, the syntheses of poly(styrene‐b‐isoprene) and poly(styrene‐b‐methyl methacrylate) block copolymers were also successfully carried out within the automated synthesizer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4151–4160, 2005  相似文献   

13.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

14.
A series of new mesomorphic block copolymers composedofdifferentmacroinitiators, including poly(ethylene oxide), polystyrene, and poly(ethylene oxide)‐b‐polystyrene,and polymethacrylate with a pendent cyanoterphenyl group were synthesized through atom transfer radical polymerization. The number‐average molecular weights of the three diblock copolymers, determined by gel permeation chromatography, were 10,254, 9,772, and 15,632 g mol?1, and their polydispersity indices were 1.17, 1.28, and 1.34. The mesomorphic and optical properties of all the block copolymers were investigated, and they possessed a smectic A phase with mesophasic ranges wider than 100 °C. Moreover, X‐ray diffraction patterns provided evidence of the smectic A phase and the corresponding interdigitated packing of all the polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4593–4602, 2006  相似文献   

15.
Stimuli-responsive star polymers gain more and more interest over the last decades due to their unique properties compared to their linear counterparts. The branched structure for instance has influence on the responsive behavior of these polymers. This review offers an overview of stimuli-responsive star polymers generated by different polymerization techniques, e.g. anionic and controlled radical polymerization (CRP). Beside conventional branched homopolymers different other types like block copolymers, miktoarm star copolymers, core crosslinked star polymers (CCS) and comb polymers are also presented. Furthermore their responsive behavior in solution or immobilized on a substrate, and their applications are outlined. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2980–2994  相似文献   

16.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

17.
A straightforward and efficient synthetic method that transforms poly(methyl methacrylate) (PMMA) into value‐added materials is presented. Specifically, PMMA is modified by transesterification to produce a variety of functional copolymers from a single starting material. Key to the reaction is the use of lithium alkoxides, prepared by treatment of primary alcohols with LDA, to displace the methyl esters. Under optimized conditions, up to 65% functionalization was achieved and copolymers containing alkyl, alkene, alkyne, benzyl, and (poly)ether side groups could be prepared. The versatility of this protocol was further demonstrated through the functionalization of both PMMA homo and block copolymers obtained through either radical polymerization (traditional and controlled) or anionic procedures. The scope of this strategy was illustrated by extension to a range of architectures and polymer backbones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1566–1574  相似文献   

18.
Biodegradable, triblock poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) (PLA‐b‐PCL‐b‐PLA) copolymers and 3‐star‐(PCL‐b‐PLA) block copolymers were synthesized by ring opening polymerization of lactides in the presence of poly(ε‐caprolactone) diol or 3‐star‐poly(ε‐caprolactone) triol as macroinitiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C‐NMR. The formation of block copolymers was confirmed by NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5363–5370, 2008  相似文献   

19.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

20.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号