首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strecker synthesis has long been considered one of the prebiotic reactions for the synthesis of α‐amino acids. However, the correlation between the origin of chirality and highly enantioenriched α‐amino acids through this method remains a puzzle. In the reaction, it may be conceivable that the handedness of amino acids has been determined at the formation stage of the chiral intermediate α‐aminonitrile, that is, the enantioselective addition of hydrogen cyanide to an imine. Herein, an enantiotopic crystal surface of an achiral imine acted as an origin of chirality for the enantioselective formation of α‐aminonitriles by the addition of HCN. In conjunction with the amplification of the enantiomeric excess and multiplication of enantioenriched aminonitrile, a large amount of near enantiopure α‐amino acids, with the l ‐ and d ‐handedness corresponding to the molecular orientation of the imine, is reported.  相似文献   

2.
Aqueous solutions of the achiral, monomeric, nucleobase mimics (2,4,6‐triaminopyrimidine, TAP, and a cyanuric acid derivative, CyCo6) spontaneously assemble into macroscopic homochiral domains of supramolecular polymers. These assemblies exhibit a high degree of chiral amplification. Addition of a small quantity of one handedness of a chiral derivative of CyCo6 generates exclusively homochiral structures. This system exhibits the highest reported degree of chiral amplification for dynamic helical polymers or supramolecular helices. Significantly, homochiral polymers comprised of hexameric rosettes with structural features that resemble nucleic acids are formed from mixtures of cyanuric acid (Cy) and ribonucleotides (l‐, d ‐pTARC) that arise spontaneously from the reaction of TAP with the sugars. These findings support the hypothesis that nucleic acid homochirality was a result of symmetry breaking at the supramolecular polymer level.  相似文献   

3.
The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X‐ray diffraction analysis suggests that the absolute configuration of the in‐tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation.  相似文献   

4.
Synthetic routes that provide facile access to either enantiomeric form of a target compound are particularly valuable. The crystallization‐free dual resolution of phosphine oxides that gives highly enantioenriched materials (up to 94 % ee) in excellent yields is reported. Both enantiomeric oxides have been prepared from a single intermediate, (RP)‐alkoxyphosphonium chloride, which is formed in the course of a selective dynamic kinetic resolution using a single enantiomer of menthol as the chiral auxiliary. The origin of the dual stereoselectivity lies in bifurcation of the reaction pathway of this intermediate, which works as a stereochemical railroad switch. Under controlled conditions, Arbuzov‐type collapse of this intermediate proceeds through C O bond fission with retention of the configuration at the phosphorus center. Conversely, alkaline hydrolysis of the P O bond leads to the opposite SP enantiomer.  相似文献   

5.
6.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

7.
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β‐carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α‐carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant‐and‐soldier behavior, a small number of chiral sergeants (α‐carotene or astaxanthin) force the achiral soldier molecules (β‐ or 11,11′‐[D2]‐β‐carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co‐crystallization of chiral and achiral analogues.  相似文献   

8.
9.
The photoinduced regio‐ and enantioselective coupling of naphthols and derivatives thereof is achieved in the confined chiral coordination space of a RuII metalloligand based cage. The racemic or enantiopure cages encapsulate naphthol guests, which then undergo a regiospecific 1,4‐coupling, rather than the normal 1,1‐coupling, to form 4‐(2‐hydroxy‐1‐naphthyl)‐1,2‐napthoquinones; moderate stereochemical control is achieved with homochiral cages. The photoreactions proceed under both aerobic and anaerobic conditions but through distinct pathways that nevertheless involve the same radical intermediates. This unusual dimerization constitutes a very rare example of asymmetric induction in biaryl coupling by making use of coordination cages with dual functionality—photoredox reactivity and stereoselectivity.  相似文献   

10.
Context‐dependent signaling is a ubiquitous phenomenon in nature, but ways to mimic the essence of these nano‐ and microscale dynamic molecular processes by noncovalent synthesis in the cellular environment have yet to be developed. Herein we present a dynamic continuum of noncovalent filaments formed by the instructed assembly (iA) of a supramolecular phosphoglycopeptide (sPGP) as context‐dependent signals for controlling the death and morphogenesis of cells. Specifically, ectophosphatase enzymes on cancer cells catalyze the formation of sPGP filaments to result in cell death; however, damping of the enzyme activity induces the formation 3D cell spheroids. Similarly, the ratio of stromal and cancer cells in a coculture can be used to modulate the expression of the ectophosphatase, so that the iA process leads to the formation of cell spheroids. The spheroids mimic the tumor microenvironment for drug screening.  相似文献   

11.
Relative to other cyclic poly‐phosphorus species (that is, cyclo‐Pn), the planar cyclo‐P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4 complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2? dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo‐P4 complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2 and Mo(η4‐P4)(CO)2(CNArDipp2)2 with KC8 produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2? and [Mo(η4‐P4)(CO)2(CNArDipp2)]2?, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3 regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.  相似文献   

12.
A series of tubular molecules with different lengths have been synthesized by attaching Trp‐incorporated peptides to the pillar[5]arene backbone. The tubular molecules are able to insert into the lipid bilayer to form unimolecular transmembrane channels. One of the channels has been revealed to specifically insert into the bilayer of the Gram‐positive bacteria. In contrast, this channel cannot insert into the membranes of the mammalian rat erythrocytes even at the high concentration of 100 μm . It was further demonstrated that, as a result of this high membrane selectivity, the channel exhibits efficient antimicrobial activity for the Gram‐positive bacteria and very low hemolytic toxicity for mammalian erythrocytes.  相似文献   

13.
14.
15.
Dehalogenative cycloaddition reaction is a powerful strategy to generate new ring scaffolds with π‐conjugated features on a surface, and thus holds great promise toward atomically precise electronic devices or nanomaterials. The ortho‐dihalo substitution provides a good strategy to realize cycloaddition. However, the limited understanding of intermediate states involved hinders mechanistic exploration for further precise design and optimization of reaction products. Now, the evolutions of competing surface‐stabilized radicals and organometallic intermediates in real space were visualized toward the formation of dominant conjugated four‐membered ring connections. From the interplay of scanning tunneling microscopy and density functional theory calculations, the stepwise metal‐mediated dehalogenative cycloaddition pathway is elucidated both experimentally and theoretically. The results provide fundamental insights into the intermediate states involved in on‐surface synthesis.  相似文献   

16.
17.
18.
Alkenyl boronic esters are important reagents in organic synthesis. Herein, we report that these valuable products can be accessed by the homologation of boronic esters with lithiated epoxysilanes. Aliphatic and electron‐rich aromatic boronic esters provided vinylidene boronic esters in moderate to high yields, while electron‐deficient aromatic and vinyl boronic esters were found to give the corresponding vinyl silane products. Through DFT calculations, this divergence in mechanistic pathway has been rationalized by considering the stabilization of negative charge in the C?Si and C?B bond breaking transition states. This vinylidene homologation was used in a short six‐step stereoselective synthesis of the proposed structure of machillene, however, synthetic and reported data were found to be inconsistent.  相似文献   

19.
Stable isotope ratio measurements have been used as a measure of a wide variety of processes, including solar system evolution, geological formational temperatures, tracking of atmospheric gas and aerosol chemical transformation, and is the only means by which past global temperatures may be determined over long time scales. Conventionally, isotope effects derive from differences of isotopically substituted molecules in isotope vibrational energy, bond strength, velocity, gravity, and evaporation/condensation. The variations in isotope ratio, such as 18O/16O (δ18O) and 17O/16O (δ17O) are dependent upon mass differences with δ17O/δ18O=0.5, due to the relative mass differences (1 amu vs. 2 amu). Relations that do not follow this are termed mass independent and are the focus of this Minireview. In chemical reactions such as ozone formation, a δ17O/δ18O=1 is observed. Physical chemical models capture most parameters but differ in basic approach and are reviewed. The mass independent effect is observed in atmospheric species and used to track their chemistry at the modern and ancient Earth, Mars, and the early solar system (meteorites).  相似文献   

20.
In protein‐rich environments such as the blood, the formation of a protein corona on receptor‐targeting nanoparticles prevents target recognition. As a result, the ability of targeted nanoparticles to selectively bind to diseased cells is drastically inhibited. Backfilling the surface of a targeted nanoparticle with polyethylene glycol (PEG) molecules is demonstrated to reduce the formation of the protein corona and re‐establishes specific binding. The length of the backfilled PEG molecules must be less than the length of the ligand linker; otherwise, PEG interferes with the binding of the targeting ligand to its corresponding cellular receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号