首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Sb-based materials have attracted much attention owing to their ability to undergo a multi-electron alloy reaction with K+. However, there are still the serious problems of volume change and aggregation of particles, which lead to rapid capacity fading and a limited lifespan. In this work, a graphene/amorphous carbon restriction structure is proposed, in which the amorphous carbon layer on the surface of Sb nanoparticles can protect the particles from pulverization, and the graphene can buffer the volume change of the material. In addition, the conductive network formed by the dual carbon structure effectively improves the rate performance of the material. Thus, the material delivers a high capacity of 550 mA h g−1 at 100 mA g−1, a rate capability of 370 mA h g−1 at 2000 mA g−1, and a long lifespan of 350 cycles without significant capacity fading. The dual carbon strategy proposed offers a reference for the design of high-performance anode materials.  相似文献   

2.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

3.
To recycle rusty stainless‐steel meshes (RSSM) and meet the urgent requirement of developing high‐performance cathodes for potassium‐ion batteries (KIB), we demonstrate a new strategy to fabricate flexible binder‐free KIB electrodes via transformation of the corrosion layer of RSSM into compact stack‐layers of Prussian blue (PB) nanocubes (PB@SSM). When further coated with reduced graphite oxide (RGO) to enhance electric conductivity and structural stability, the low‐cost, stable, and binder‐free RGO@PB@SSM cathode exhibits excellent electrochemical performances for KIB, including high capacity (96.8 mAh g−1), high discharge voltage (3.3 V), high rate capability (1000 mA g−1; 42 % capacity retention), and outstanding cycle stability (305 cycles; 75.1 % capacity retention).  相似文献   

4.
YF Lin  SC Chiu  ST Wang  SK Fu  CH Chen  WJ Xie  SH Yang  CS Hsu  JF Chen  X Zhou  Z Liu  J Fang  WB Jian 《Electrophoresis》2012,33(16):2475-2481
DEP is one of promising techniques for positioning nanomaterials into the desirable location for nanoelectronic applications. In contrast, the lithography technique is commonly used to make ultra-thin conducting wires and narrow gaps but, due to the limit of patterning resolution, it is not feasible to make electrical contacts on ultra-small nanomaterials for a bottom-up device fabrication. Thus, integrating the lithography and dielectrophoresis, a real bottom-up fabrication can be achieved. In this work, the device with the nanogap in between two nanofinger-electrodes is made using electron-beam lithography from top down and the ultra-small nanomaterials, such as colloidal PbSe quantum dots, polyaniline nanofibers, and reduced-graphene-oxide flakes, are placed in the nanogap by DEP from bottom up. The threshold electric field for the DEP placement of PbSe nanocrystals was roughly estimated to be about 8.3 × 10(4) V/cm under our experimental configuration. After the DEP process, several procedures for reducing contact resistances are attempted and measurements of intrinsic electron transport in versatile nanomaterials are performed. It is experimentally confirmed that electron transport in both PbSe nanocrystal arrays and polyaniline nanofibers agrees well with Prof. Ping Sheng's model of granular metallic conduction. In addition, electron transport in reduced-graphene-oxide flakes follows Mott's 2D variable-range-hopping model. This study illustrates an integration of the electron-beam lithography and the DEP techniques for a precise manipulation of nanomaterials into electronic circuits for characterization of intrinsic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号