首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre‐emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water‐like density anomalies. We propose that it is the much‐discussed liquid–liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation.  相似文献   

2.
Lubricant impregnated surfaces (LISs) exhibit sliding angles below 5°. A LIS is presented that possesses photocatalytic activity as well as improved liquid repellency. In a single‐step reaction, the surface of photocatalytic mesoporous TiO2 substrate is modified by grafting polydimethylsiloxane (PDMS) brush and the residual non‐bound PDMS serves as lubricant. Since the lubricant and the hydrophobic layer are chemically identical, the grafting PDMS layer is stably swollen by the lubricant PDMS, which inhibits direct contact of liquid drops to the solid substrate. Liquid drops such as water, methanol, and even low‐surface‐tension fluorocarbons, slide on the surface with tilt angles below 1°. The surface exhibits long‐term stable photocatalytic activity while retaining its liquid repellency. This photocatalytic activity allows photocatalytic chemistry, for example, decomposition of organics, on LIS to be carried out.  相似文献   

3.
Non‐crystal formation of ice is investigated by simultaneous X‐ray diffraction and differential scanning calorimetry measurements upon cooling to ?100 °C. At room temperature, size‐tunable water confinement (≈20 Å size) in a room‐temperature ionic liquid (RTIL, 1‐butyl‐3‐methylimidazolium nitrate, [C4mim][NO3]) exists in a water‐rich region (70–90 mol % D2O). The confined water (water pocket) is characterized by almost monodispersive size distribution. In [C4mim][NO3]‐x mol % D2O (70<x<94), the absence of sharp Bragg reflections and a distinct exothermal peak indicate that crystallization/cold crystallization both of [C4mim][NO3] and D2O is suppressed, even upon slow cooling and heating.  相似文献   

4.
A new in‐situ NMR strategy (termed CLASSIC NMR) for mapping the evolution of crystallization processes is reported, involving simultaneous measurement of both liquid‐state and solid‐state NMR spectra as a function of time. This combined strategy allows complementary information to be obtained on the evolution of both the solid and liquid phases during the crystallization process. In particular, as crystallization proceeds (monitored by solid‐state NMR), the solution state becomes more dilute, leading to changes in solution‐state speciation and the modes of molecular aggregation in solution, which are monitored by liquid‐state NMR. The CLASSIC NMR experiment is applied here to yield new insights into the crystallization of m‐aminobenzoic acid.  相似文献   

5.
We report a new type of structural transformation occurring in methane adsorbed in micropores. The observed methane structures are defined by probability distributions of molecular positions. The mechanism of the transformation has been modeled using Monte Carlo method. The transformation is totally determined by a reconstruction of the probability distribution functions of adsorbed molecules. The methane molecules have some freedom to move in the pore but most of the time they are confined to the positions around the high probability adsorption sites. The observed high‐probability structures evolve as a function of temperature and pressure. The transformation is strongly discontinuous at low temperature and becomes continuous at high temperature. The mechanism of the transformation is influenced by a competition between different components of the interaction and the thermal energy. The methane structure represents a new state of matter, intermediate between solid and liquid.  相似文献   

6.
Hydrophobization of metal‐organic frameworks (MOFs) is important to push forward their practical use and thus has attracted increasing interest. In contrast to the previous reports, which mainly focused on the modification of organic ligands in MOFs, herein, we reported a novel strategy to decorate the metal‐oxo nodes of MOFs with phenylsilane to afford super‐hydrophobic NH2‐UiO‐66(Zr), which shows highly improved base resistance and holds great promise in versatile applications, such as organic/water separation, self‐cleaning, and liquid‐marble fabrication. This work demonstrates the first attempt at metal‐oxo node modification for super‐hydrophobic MOFs, advancing a new concept in the design of MOFs with controlled wettability for practical applications.  相似文献   

7.
A novel core–shell structured columnar liquid crystal composed of a donor‐acceptor dyad of tetraphenoxy perylene bisimide (PBI), decorated with four bithiophene units on the periphery, was synthesized. This molecule self‐assembles in solution into helical J‐aggregates guided by π–π interactions and hydrogen bonds which organize into a liquid‐crystalline (LC) columnar hexagonal domain in the solid state. Donor and acceptor moieties exhibit contrasting exciton coupling behavior with the PBIs’ (J‐type) transition dipole moment parallel and the bithiophene side arms’ (H‐type) perpendicular to the columnar axis. The dyad shows efficient energy and electron transfer in solution as well as in the solid state. The synergy of photoinduced electron transfer (PET) and charge transport along the narcissistically self‐assembled core–shell structure enables the implementation of the dye in two‐contact photoconductivity devices giving rise to a 20‐fold increased photoresponse compared to a reference dye without bithiophene donor moieties.  相似文献   

8.
We show graphene oxide (GO) greatly suppresses the growth and recrystallization of ice crystals, and ice crystals display a hexagonal shape in the GO dispersion. Preferred adsorption of GO on the ice crystal surface in liquid water leads to curved ice crystal surface. Therefore, the growth of ice crystal is suppressed owing to the Gibbs–Thompson effect, that is, the curved surface lowers the freezing temperature. Molecular dynamics simulation analysis reveals that oxidized groups on the basal plane of GO form more hydrogen bonds with ice in comparison with liquid water because of the honeycomb hexagonal scaffold of graphene, giving a molecular‐level mechanism for controlling ice formation. Application of GO for cryopreservation shows that addition of only 0.01 wt % of GO to a culture medium greatly increases the motility (from 24.3 % to 71.3 %) of horse sperms. This work reports the control of growth of ice with GO, and opens a new avenue for the application of 2D materials.  相似文献   

9.
Water nanoconfinement has important effects on the properties of biomolecules and ultimately on their specific functions. By performing experiments and molecular dynamic simulations, we show how intrinsic nanoconfinement controls the crystallization of small organic molecules converted by enzymatic reactions within the water nanochannels of lipid cubic phases (LCPs). By controlling the nanochannel size, enzymatic reactions in LCPs can be engineered to turn the same converted substrate into its soluble, microcrystal, or needle‐like crystal form due to the large variability in water dynamics. Differential scanning calorimetry studies, supported by molecular dynamics simulations, show that most of water within the mesophase nanochannels behaves differently due to interactions with the LCP interface, and that this mechanism has a larger impact for smaller channels. These findings suggest that the amount of free water in the core of the nanochannels is the key factor determining local substrate diffusion and self‐assembly within LCPs.  相似文献   

10.
The cold sintering process (CSP) densifies ceramics at much lower temperatures than conventional sintering processes. Several ceramics and composite systems have been successfully densified under cold sintering. For the grain growth kinetics of zinc oxide, reduced activation energies are shown, and yet the mechanism behind this growth is unknown. Herein, we investigate these mechanisms in more detail with experiments and ReaxFF molecular dynamics simulations. We investigated the recrystallization of zinc cations under various acidic conditions and found that their adsorption to the surface can be a rate‐limiting factor for cold sintering. Our studies show that surface hydroxylation in CSP does not inhibit crystallization; in contrast, by creating a surface complex, it creates an orders of magnitude acceleration in surface diffusion, and in turn, accelerates recrystallization.  相似文献   

11.
The design of efficient noncentrosymmetric materials remains the ultimate goal in the field of organic second‐order nonlinear optics. Unlike inorganic crystals currently used in second‐order nonlinear optical applications, organic materials are an attractive alternative owing to their fast electro‐optical response and processability, but their alignment into noncentrosymmetric film remains challenging. Here, symmetry breaking by judicious functionalization of 3D organic octupoles allows the emergence of multifunctional liquid crystalline chromophores which can easily be processed into large, flexible, thin, and self‐oriented films with second harmonic generation responses competitive to the prototypical inorganic KH2PO4 crystals. The liquid‐crystalline nature of these chiral organic films also permits the modulation of the nonlinear optical properties owing to the sensitivity of the supramolecular organization to temperature, leading to the development of tunable macroscopic materials.  相似文献   

12.
This paper describes the reversible control of the size of liquid‐metal nanoparticles under ultrasonication. Gallium was utilized as a liquid metal, which has a melting point of 29.8 °C. Investigating the effects of ultrasonication (power, time, and temperature) on the formation of gallium nanoparticles revealed that the process is similar to the formation of oil in water (O/W) or water in oil (W/O) emulsions, as the temperature significantly affects the size of the gallium nanoparticles (GaNPs). Under ultrasonication, the balance between the break‐up and coalescence of the GaNPs can be adjusted by changing the temperature or adding acid through modulating the natural surface oxide layer (which can be removed with acid) and the stabilizing effect of the surfactant dodecanethiol. Coalescence was predominant at higher temperatures, whereas particle break‐up was found to be predominant at lower temperatures. Furthermore, the change in size was accompanied by a shift in the plasmonic absorption of the GaNPs in the UV region.  相似文献   

13.
Chains of hydrogen bonds such as those found in water and proteins are often presumed to be more stable than the sum of the individual H bonds. However, the energetics of cooperativity are complicated by solvent effects and the dynamics of intermolecular interactions, meaning that information on cooperativity typically is derived from theory or indirect structural data. Herein, we present direct measurements of energetic cooperativity in an experimental system in which the geometry and the number of H bonds in a chain were systematically controlled. Strikingly, we found that adding a second H‐bond donor to form a chain can almost double the strength of the terminal H bond, while further extensions have little effect. The experimental observations add weight to computations which have suggested that strong, but short‐range cooperative effects may occur in H‐bond chains.  相似文献   

14.
Understanding the multiple phase transitions such as collapse transition, phase separation, and crystallization in solutions is of fundamental importance to control the solution structure of conjugated polymers in device processing. Combining in situ synchrotron radiation small and wide‐angle X‐ray scattering, ultrasensitive differential scanning calorimetry, ultraviolet–visible absorption spectroscopy, and polarized optical microscopy, we investigate the order–disorder transitions in poly(3‐hexylthiophene)/toluene solutions during cooling and heating processes. We demonstrate the occurrence of collapse transition of polymer chains from a random coil state to a lower dimensional network prior to the onset of crystallization during cooling in solution. This conformational preordering can lead to the formation of a lyotropic liquid crystalline phase, which is of great significance to the crystallization and ordering in polymer films, and further to promote its electric performance. It is examined that the mobility of films cast from chain‐collapsed solutions can be one order of magnitude higher than that from isotropic solutions with random‐coiled conformations. Thus, the conformational preordering in solutions is proposed to be a more efficient way than the postannealing of films to improve the electric performance of conjugated polymer films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1105–1114  相似文献   

15.
2D transition metal carbides and nitrides (MXenes), a class of emerging nanomaterials with intriguing properties, have attracted significant attention in recent years. However, owing to the highly hydrophilic nature of MXene nanosheets, assembly strategies of MXene at liquid–liquid interfaces have been very limited and challenging. Herein, through the cooperative assembly of MXene and amine‐functionalized polyhedral oligomeric silsesquioxane at the oil–water interface, we report the formation, assembly, and jamming of a new type MXene‐based Janus‐like nanoparticle surfactants, termed MXene‐surfactants (MXSs), which can significantly enhance the interfacial activity of MXene nanosheets. More importantly, this simple assembly strategy opens a new platform for the fabrication of functional MXene assemblies from mesoscale (e.g., structured liquids) to macroscale (e.g., aerogels), that can be used for a range of applications, including nanocomposites, electronic devices, and all‐liquid microfluidic devices.  相似文献   

16.
Understanding the molecular‐level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two‐dimensional (2D) zeolites, when used as shape‐selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure‐directing agent (SDA) removal. Herein we report that PST‐9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small‐pore zeolite EU‐12 under its crystallization conditions through the single‐layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.  相似文献   

17.
Paramagnetic relaxation enhancement (PRE) is commonly used to speed up spin lattice relaxation time (T1) for rapid data acquisition in NMR structural studies. Consequently, there is significant interest in novel paramagnetic labels for enhanced NMR studies on biomolecules. Herein, we report the synthesis and characterization of a modified poly(styrene‐co‐maleic acid) polymer which forms nanodiscs while showing the ability to chelate metal ions. Cu2+‐chelated nanodiscs are demonstrated to reduce the T1 of protons for both polymer and lipid‐nanodisc components. The chelated nanodiscs also decrease the proton T1 values for a water‐soluble DNA G‐quadruplex. These results suggest that polymer nanodiscs functionalized with paramagnetic tags can be used to speed‐up data acquisition from lipid bilayer samples and also to provide structural information from water‐soluble biomolecules.  相似文献   

18.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

19.
Control over particle interactions and organization at fluid interfaces is of great importance both for fundamental studies and practical applications. Rendering these systems stimulus‐responsive is thus a desired challenge both for investigating dynamic phenomena and realizing reconfigurable materials. Here, we describe the first reversible photocontrol of two‐dimensional colloidal crystallization at the air/water interface, where millimeter‐sized assemblies of microparticles can be actuated through the dynamic adsorption/desorption behavior of a photosensitive surfactant added to the suspension. This allows us to dynamically switch the particle organization between a highly crystalline (under light) and a disordered (in the dark) phase with a fast response time (crystallization in ≈10 s, disassembly in ≈1 min). These results evidence a new kind of dissipative system where the crystalline state can be maintained only upon energy supply.  相似文献   

20.
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the corresponding experimental measurements on water. Our simulations also suggest that the Jagla potential may reproduce features of the HDA-VHDA transformations observed in glassy water upon compression and decompression. Snapshots of the system during the HDA-VHDA and HDA-LDA transformations reveal a clear segregation between LDA and HDA but not between HDA and VHDA, consistent with the possibility that LDA and HDA are separated by a first order transformation as found experimentally, whereas HDA and VHDA are not. Our results demonstrate that a system of particles with simple isotropic pair interactions, a Jagla potential with two characteristic length scales, can present polyamorphism in the glass state as well as reproducing many of the distinguishing properties of liquid water. While most isotropic pair potential models crystallize readily on simulation time scales at the low temperatures investigated here, the Jagla potential is an exception, and is therefore a promising model system for the study of glass phenomenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号