首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrated advantages of organic electrode materials and potassium metal make the organic potassium-ion batteries (OPIBs) promising secondary batteries. This review summarizes the latest research progress on OPIBs according to the different types of electrode materials (namely, organic small molecules compounds, polymers, and frameworks (metal–organic frameworks (MOFs), covalent organic frameworks (COFs)). Additionally, the research prospects and outlook for OPIBs are also provided.  相似文献   

2.
We show the synthesis of a redox-active quinone, 2-methoxy-1,4-hydroquinone (MHQ), from a bio-based feedstock and its suitability as electrolyte in aqueous redox flow batteries. We identified semiquinone intermediates at insufficiently low pH and quinoid radicals as responsible for decomposition of MHQ under electrochemical conditions. Both can be avoided and/or stabilized, respectively, using H3PO4 electrolyte, allowing for reversible cycling in a redox flow battery for hundreds of cycles.  相似文献   

3.
Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li+/Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L−1 and an energy density of 189 Wh L−1 or 165 Wh kg−1 have been achieved when coupled with a I3/I catholyte. The prototype cell has also been extended to the use of a Br2-based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L−1. The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries.  相似文献   

4.
Magnesium batteries, like lithium-ion batteries, with higher abundance and similar efficiency, have drawn great interest for large-scale applications such as electric vehicles, grid energy storage and many more. On the other hand, the use of organic electrode materials allows high energy-performance, metal-free, environmentally friendly, versatile, lightweight, and economically efficient magnesium storage devices. In particular, the structural diversity and the simple activity of organic molecules make redox properties, and hence battery efficiency, easy to monitor. While organic magnesium batteries still in their infancy, this field becomes more and more promising because significant results were reported. To summarize the achievements in studies on organic cathodes for magnesium systems, their synthesis is discussed, combined with electrode design to provide the basis for controlling the electrochemical properties. Moreover, the techniques to synthesize organic materials with high-yield are mentioned. Finally, potential problems and prospects are explored to further improve organic cathodes.  相似文献   

5.
Electrochemical energy storage with redox‐flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non‐aqueous organic RFBs based on 5,10,15,20‐tetraphenylporphyrin (H2TPP) as a bipolar redox‐active material (anode: [H2TPP]2?/H2TPP, cathode: H2TPP/[H2TPP]2+) and a Y‐zeolite–poly(vinylidene fluoride) (Y‐PVDF) ion‐selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L?1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and ?40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold‐climate conditions.  相似文献   

6.
氧化还原液流电池是一类循环效率高、性质可调控的拥有广阔前景的储能体系。相比无机液流电池体系,以TEMPO及其衍生物作为氧化还原活性材料的有机液流电池,具有成本较低、电压较高、可逆性好、结构可调等优势。本文综述了以TEMPO及其衍生物作为氧化还原活性材料的有机液流电池的研究进展,介绍了相关的实验方法、提出了未来的研究方向。  相似文献   

7.
有机硫化物电极材料是一类新型高比容量的储能材料,通过S-S键的可逆断裂与键合进行释能与储能,主要应用于锂离子电池的正极。该材料包括有机二硫化物、有机多硫化物和硫化聚合物等。本文综述了有机硫化物电极材料的研究现状,分析了各种材料的优势与不足,并展望了其发展趋势。如何提高现有材料的比容量并改善其循环性能是目前的研究重点。  相似文献   

8.
The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.  相似文献   

9.
10.
The development of various redox‐flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox‐flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development.  相似文献   

11.
Calcium batteries are a potentially sustainable, high‐energy‐density battery technology beyond Li ion batteries. Now the development of Ca batteries has become possible with a newly invented Ca electrolyte capable of reversible Ca deposition/stripping at room temperature.  相似文献   

12.
Na‐ion batteries are an attractive alternative to Li‐ion batteries for large‐scale energy storage systems because of their low cost and the abundant Na resources. This Review provides a comprehensive overview of selected anode materials with high reversible capacities that can increase the energy density of Na‐ion batteries. Moreover, we discuss the reaction and failure mechanisms of those anode materials with a view to suggesting promising strategies for improving their electrochemical performance.  相似文献   

13.
Rechargeable batteries are considered one of the most effective energy storage technologies to bridge the production and consumption of renewable energy. The further development of rechargeable batteries with characteristics such as high energy density, low cost, safety, and a long cycle life is required to meet the ever‐increasing energy‐storage demands. This Review highlights the progress achieved with halide‐based materials in rechargeable batteries, including the use of halide electrodes, bulk and/or surface halogen‐doping of electrodes, electrolyte design, and additives that enable fast ion shuttling and stable electrode/electrolyte interfaces, as well as realization of new battery chemistry. Battery chemistry based on monovalent cation, multivalent cation, anion, and dual‐ion transfer is covered. This Review aims to promote the understanding of halide‐based materials to stimulate further research and development in the area of high‐performance rechargeable batteries. It also offers a perspective on the exploration of new materials and systems for electrochemical energy storage.  相似文献   

14.
钠离子电池凭借钠资源丰富、价格低廉在大规模储能领域有着重要应用前景. 然而,钠离子相对锂离子较大的半径和质量限制了它在电极材料中的可逆脱嵌,导致其电化学性能不佳. 因此研发稳定、高效储钠的高比能电极材料是钠离子电池实用化的关键. 另外,进一步优化与电极材料相匹配的电解质来实现高安全、长寿命钠离子电池的构建,推动其商业化进程,也是迫切需要解决的问题. 本文主要对室温钠离子电池关键材料(包括正极、负极和电解质材料)的研究进展进行简要综述,并探讨了其面临的困难及可行的解决方案,为钠离子电池的发展提供一定参考依据.  相似文献   

15.
目前,碱金属(锂、钠、钾等)离子电池中的锂离子电池已经广泛应用于社会生产生活的各个方面,有力地支撑了社会的自动化、信息化和智能化。然而,由于锂在地壳中的丰度较低,以较高丰度的钠为基础的钠离子电池引起了研究者和社会的广泛关注。其中,正极材料是制约钠离子电池实用化的重要因素之一,人们需要开发出面向实际应用的正极材料。P2结构层状复合金属氧化物钠离子电池正极材料具有资源丰富、制备简单、结构稳定、放电容量高、倍率性能好和循环稳定性较好等优点,获得了研究者的广泛关注,具有实用化前景。这一系列材料由于涉及到多种过渡金属元素的组合,较为复杂。本文针对含单一过渡金属、二元组分过渡金属、三元及以上组分过渡金属的P2结构材料及其优化改性进行了系统性梳理,力求厘清研究脉络,梳理研究思路,并给出了今后发展的方向与预测。P2结构材料的主要问题是提高其初始放电容量,氧还原的应用是解决这一问题的重要方向。此外,优化材料组分及采用具有丰富储量、低成本、高安全性和环境友好性的原材料是进一步降低成本并保护环境的重要研究方向。  相似文献   

16.
Flow batteries (FBs) have become a central topic recently, due to their promising prospect of addressing the issues of the random and intermittent nature of renewable energy sources. However, the successful industrialization of current FB systems is still limited by their relatively low energy densities and high cost. Research and development into novel aqueous FB systems with high energy density, high safety, and low cost are accordingly urgently required. Some novel aqueous FB systems have been explored in recent years to overcome issues of traditional FBs and vanadium FBs, in particular. Further modifications have also been made to improve their performance. In this review, appealing novel aqueous FB systems, such as zinc- and quinone-based FB systems, are reviewed, in terms of the operating principles, advantages, drawbacks, corresponding performance, and subsequent modifications. Moreover, recent investigations and advancements, and prospective research directions for novel aqueous FB systems, are summarized. Therefore, this review will provide guidance and perspectives for developing new aqueous FB systems.  相似文献   

17.
赵磊  王维坤  王安邦  余仲宝  陈实  杨裕生 《化学进展》2010,22(12):2268-2275
有机物作为锂电池正极材料具有理论比容量高、原料丰富、环境友好、体系安全的优点,近年来受到关注。本文综述了含氧有机物正极材料的研究进展,概括了醌类、酸酐和硝基化合物等材料的结构特征、电化学性能以及充放电机理,比较了各种材料的优势与不足,并对比了不同有机物材料的放电电位和比容量,同时对该类材料的研究方向进行了展望。  相似文献   

18.
With the increasing demand for efficient and economic energy storage, Li‐S batteries have become attractive candidates for the next‐generation high‐energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li‐S batteries, this Review introduces the electrochemistry of Li‐S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li‐S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li‐S batteries with a metallic Li‐free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li‐S batteries serves as a prospective strategy for the industry in the future.  相似文献   

19.
All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na4C6O6, that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g?1) and one of the highest specific energies (395 Wh kg?1) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na4C6O6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na4C6O6 as both cathode and anode materials.  相似文献   

20.
Aqueous zinc (Zn) batteries have been considered as promising candidates for grid‐scale energy storage. However, their cycle stability is generally limited by the structure collapse of cathode materials and dendrite formation coupled with undesired hydrogen evolution on the Zn anode. Herein we propose a zinc–organic battery with a phenanthrenequinone macrocyclic trimer (PQ‐MCT) cathode, a zinc‐foil anode, and a non‐aqueous electrolyte of a N,N‐dimethylformamide (DMF) solution containing Zn2+. The non‐aqueous nature of the system and the formation of a Zn2+–DMF complex can efficiently eliminate undesired hydrogen evolution and dendrite growth on the Zn anode, respectively. Furthermore, the organic cathode can store Zn2+ ions through a reversible coordination reaction with fast kinetics. Therefore, this battery can be cycled 20 000 times with negligible capacity fading. Surprisingly, this battery can even be operated in a wide temperature range from ?70 to 150 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号