首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of a relatively simple and efficient method to extend the π‐conjugation of readily available aromatics in one‐dimension is of significant value. In this paper, pyrenes, peropyrenes, and teropyrenes were synthesized through a double or quadruple benzannulation reaction of alkynes promoted by Brønsted acid. This novel method does not involve cyclodehydrogenation (oxidative aryl–aryl coupling) to arrive at the newly incorporated large arene moieties. All of the target compounds were synthesized in moderate to good yields and were fully characterized with the structures unambiguously confirmed by X‐ray crystallography. As expected, photophysical characterization clearly shows increasing red‐shifts as a function of extended conjugation within the fused ring systems.  相似文献   

2.
The cooperative catalysis of copper, silver, and Brønsted acid is presented as a new strategy for olefin functionalization. The catalytic direct carbohydroxylation of arylalkenes with allylic alcohols provided a straightforward and efficient approach for preparing 4,5‐unsaturated alcohols. Synthetically useful functional groups, such as Cl, Br, carbonyl, and chloromethyl, remained intact during the functionalization reaction.  相似文献   

3.
A highly enantioselective synthesis of 1,4‐enynes is described that proceeds through an organocatalytic reaction between propargyl alcohols and trialkenylboroxines. Our strategy relies on acid‐mediated generation of the carbocationic intermediate from propargyl alcohols followed by enantioselective alkenylation with trialkenylboroxines. A range of chiral 1,4‐enynes were obtained in moderate to good yields with high levels of enantioselectivity. Use of a highly acidic chiral N‐triflyl phosphoramide catalyst, which has two distant Lewis basic oxygen atoms, was found to be crucial for both high reactivity and selectivity in the present reaction.  相似文献   

4.
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 ( 1A ), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] ( 1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl ( 1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], ( 1D ), and (TEA)[FeIII(L)2], ( 1E ) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.  相似文献   

5.
We report a multi‐component asymmetric Brønsted acid‐catalyzed aza‐Darzens reaction which is not limited to specific aromatic or heterocyclic aldehydes. Incorporating alkyl diazoacetates and, important for high ee's, ortho‐tert‐butoxyaniline our optimized reaction (i.e. solvent, temperature and catalyst study) affords excellent yields (61–98 %) and mostly >90 % optically active cis‐aziridines. (+)‐Chloramphenicol was generated in 4 steps from commercial starting materials. A tentative mechanism is outlined.  相似文献   

6.
7.
8.
9.
10.
An enantioselective three‐component radical reaction of quinolines or pyridines with enamides and α‐bromo carbonyl compounds by dual photoredox and chiral Brønsted acid catalysis is presented. A range of valuable chiral γ‐amino‐acid derivatives are accessible in high chemo‐, regio‐, and enantioselectivity from simple, readily available starting materials under mild reaction conditions. Using the same strategy, the asymmetric synthesis of 1,2‐diamine derivatives is also reported.  相似文献   

11.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   

12.
A highly enantioselective regiodivergent addition of alkoxyallenes to pyrazolones was developed to afford multiply functionalized alkylated products bearing a quaternary carbon stereocenter in high yields with excellent stereoselectivities. One approach is enabled by palladium catalysis, thus leading to branched allylic pyrazol‐5‐ones under mild reaction conditions. The other is catalyzed by a chiral Brønsted acid to give linear products exclusively. Moreover, the usefulness of this new method was highlighted by converting the allylic products into other interesting multifunctionalized pyrazolone derivatives which would be of great potential for the exploitation of pharmaceutically important molecules.  相似文献   

13.
14.
Chiral phosphoric acids are incorporated into indium‐based metal–organic frameworks (In‐MOFs) by sterically preventing them from coordination. This concept leads to the synthesis of three chiral porous 3D In‐MOFs with different network topologies constructed from three enantiopure 1,1′‐biphenol‐phosphoric acid derived tetracarboxylate linkers. More importantly, all the uncoordinated phosphoric acid groups are periodically aligned within the channels and display significantly enhanced acidity compared to the non‐immobilized acids. This facilitates the Brønsted acid catalysis of asymmetric condensation/amine addition and imine reduction. The enantioselectivities can be tuned (up to >99 % ee) by varying the substituents to achieve a nearly linear correlation with the concentrations of steric bulky groups in the MOFs. DFT calculations suggest that the framework provides a chiral confined microenvironment that dictates both selectivity and reactivity of chiral MOFs.  相似文献   

15.
Brønsted acids of anionic chiral CoIII complexes act as bifunctional phase‐transfer catalysts to shuttle the substrates across the solvent interface and control stereoselectivity. The diastereomeric chiral CoIII‐templated Brønsted acids, with the same chiral ligands, enabled a switch in the enantioselective bromoaminocyclization of olefins to afford the two enantiomers of 2‐substituted pyrrolidines with high enantioselectivities (up to 99:1 e.r.).  相似文献   

16.
17.
18.
19.
20.
The first highly efficient and practical chiral Brønsted acid catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes and asymmetric hydroamination of unactivated dienes with both high E/Z selectivity and enantioselectivity are described herein. The transformation proceeds through a new catalytic asymmetric model involving a highly reactive π‐allylic carbocationic intermediate, generated from racemic allenes or dienes through a proton transfer mediated by an activating/directing thiourea group. This method affords expedient access to structurally diverse enantioenriched, potentially bioactive alkenyl‐containing aza‐heterocycles and bicyclic aza‐heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号