首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The scaffold diversity of 7 representative commercial and proprietary compound libraries is explored for the first time using both Murcko frameworks and Scaffold Trees. We show that Level 1 of the Scaffold Tree is useful for the characterization of scaffold diversity in compound libraries and offers advantages over the use of Murcko frameworks. This analysis also demonstrates that the majority of compounds in the libraries we analyzed contain only a small number of well represented scaffolds and that a high percentage of singleton scaffolds represent the remaining compounds. We use Tree Maps to clearly visualize the scaffold space of representative compound libraries, for example, to display highly populated scaffolds and clusters of structurally similar scaffolds. This study further highlights the need for diversification of compound libraries used in hit discovery by focusing library enrichment on the synthesis of compounds with novel or underrepresented scaffolds.  相似文献   

2.
Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp3‐rich terpenoid scaffolds and nitrogen‐containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid‐like compounds based on Lewis‐acid‐catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid‐like compound library has a high level of three‐dimensional‐shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid‐like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid‐like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries.  相似文献   

3.
Identification of novel compound classes for a drug target is a challenging task for cheminformatics and drug design when considerable research has already been undertaken and many potent lead structures have been identified, which leaves limited unclaimed chemical space for innovation. We validated and successfully applied different state-of-the-art techniques for virtual screening (Bayesian machine learning, automated molecular docking, pharmacophore search, pharmacophore QSAR and shape analysis) of 4.6 million unique and readily available chemical structures to identify promising new and competitive antagonists of the strychnine-insensitive Glycine binding site (GlycineB site) of the NMDA receptor. The novelty of the identified virtual hits was assessed by scaffold analysis, putting a strong emphasis on novelty detection. The resulting hits were tested in vitro and several novel, active compounds were identified. While the majority of the computational methods tested were able to partially discriminate actives from structurally similar decoy molecules, the methods differed substantially in their prospective applicability in terms of novelty detection. The results demonstrate that although there is no single best computational method, it is most worthwhile to follow this concept of focused compound library design and screening, as there still can new bioactive compounds be found that possess hitherto unexplored scaffolds and interesting variations of known chemotypes.  相似文献   

4.
The scaffold concept is widely applied in chemoinformatics and medicinal chemistry to organize bioactive compounds according to common core structures or associate compound classes with specific biological activities. A variety of scaffold analyses have been carried out to derive statistics for scaffold distributions, generate structural organization schemes, or identify scaffolds that preferentially occur in given compound activity classes. Herein we further extend scaffold analysis by identifying scaffolds that display defined SAR profiles consisting of multiple properties. A structural relationship-based scaffold network has been designed as the basic data structure underlying our analysis. From network representations of scaffolds extracted from compounds active against 32 different target families, scaffolds with different SAR profiles have been extracted on the basis of decision trees that capture structural and functional characteristics of scaffolds in different ways. More than 600 scaffolds and 100 scaffold clusters were assigned to 10 SAR profiles. These scaffold sets represent different activity and target selectivity profiles and are provided for further SAR investigations including, for example, the exploration of alternative analog series for a given target of target family or the design of novel compounds on the basis of scaffold(s) with desired SAR profiles.  相似文献   

5.
High-throughput screening (HTS) campaigns in pharmaceutical companies have accumulated a large amount of data for several million compounds over a couple of hundred assays. Despite the general awareness that rich information is hidden inside the vast amount of data, little has been reported for a systematic data mining method that can reliably extract relevant knowledge of interest for chemists and biologists. We developed a data mining approach based on an algorithm called ontology-based pattern identification (OPI) and applied it to our in-house HTS database. We identified nearly 1500 scaffold families with statistically significant structure-HTS activity profile relationships. Among them, dozens of scaffolds were characterized as leading to artifactual results stemming from the screening technology employed, such as assay format and/or readout. Four types of compound scaffolds can be characterized based on this data mining effort: tumor cytotoxic, general toxic, potential reporter gene assay artifact, and target family specific. The OPI-based data mining approach can reliably identify compounds that are not only structurally similar but also share statistically significant biological activity profiles. Statistical tests such as Kruskal-Wallis test and analysis of variance (ANOVA) can then be applied to the discovered scaffolds for effective assignment of relevant biological information. The scaffolds identified by our HTS data mining efforts are an invaluable resource for designing SAR-robust diversity libraries, generating in silico biological annotations of compounds on a scaffold basis, and providing novel target family specific scaffolds for focused compound library design.  相似文献   

6.
Natural disulfide-rich peptides (DRPs) are valuable scaffolds for the development of new bioactive molecules and therapeutics. However, there are only a limited number of topologically distinct DRP folds in nature, and most of them suffer from the problem of in vitro oxidative folding. Thus, strategies to design DRPs with new constrained topologies beyond the scope of natural folds are desired. Herein we report a general evolution-inspired strategy to design new DRPs with diverse disulfide frameworks, which relies on the incorporation of two cysteine residues and a random peptide sequence into a precursor disulfide-stabilized fold. These peptides can spontaneously fold in redox buffers to the expected tricyclic topologies with high yields. Moreover, we demonstrated that these DRPs can be used as templates for the construction of phage-displayed peptide libraries, enabling the discovery of new DRP ligands from fully randomized sequences. This study thus paves the way for the development of new DRP ligands and therapeutics with structures not derived from natural DRPs.

A general method was developed to design multicyclic peptides with diverse disulfide frameworks amenable to random peptide library design, enabling the development of new disulfide-rich peptide ligands and therapeutics with structures not derived from natural peptides.  相似文献   

7.
We have accomplished the synthesis of a complex chemical library via elaboration of angular epoxyquinol scaffolds with distinct skeletal frameworks. The key strategy involves highly stereocontrolled [4 + 2] Diels-Alder cycloadditions of chiral, nonracemic epoxyquinol dienes to generate the scaffolds. Further scaffold diversification involves hydrogenation, epimerization, dehydration, and condensation of the carbonyl group with alkoxyamine and carbazate building blocks. Further elaboration of the scaffolds also provided new skeletal frameworks using hydroxyl-directed Diels-Alder cycloaddition and reductive N-N bond cleavage. The overall process afforded 244 highly complex and functionalized compounds. Preliminary biological screening of the library uncovered six compounds which showed significant inhibition of Hsp 72 induction.  相似文献   

8.
In the past 15 years, the chemistry of reversible covalent bond formation (dynamic covalent chemistry (DCC)) has been exploited to engineer networks of interconverting compounds known as dynamic combinatorial libraries (DCLs). Classically, the distribution of library components is governed by their relative free energies, and so, processes that manipulate the free energy landscape of the DCL can influence the distribution of library members. Within the same time frame, the design and implementation of molecules capable of copying themselves--so-called replicators--has emerged from the field of template-directed synthesis. Harnessing the nonlinear kinetics inherent in replicator behavior offers an attractive strategy for amplification of a target structure within a DCL and, hence, engendering high levels of selectivity within that library. The instructional nature of replicating templates also renders the combination of replication and DCC a potential vehicle for developing complex reaction networks; a prerequisite for the development of the emerging field of systems chemistry. This Concept article explores the role of kinetically and thermodynamically controlled processes within different DCC frameworks. The effects of embedding a replicating system within these DCC frameworks is explored and the consequences of the different topologies of the reaction network for amplification and selectivity within DCLs is highlighted.  相似文献   

9.
The design of multivalent glycoclusters requires the conjugation of biologically relevant carbohydrate epitopes functionalized with linker arms to multivalent core scaffolds. The multigram‐scale syntheses of three structurally modified triethyleneglycol analogues that incorporate amide moiety(ies) and/or a phenyl ring offer convenient access to a series of carbohydrate probes with different water solubilities and rigidities. Evaluation of flexibility and determination of preferred conformations were performed by conformational analysis. Conjugation of the azido‐functionalized carbohydrates with tetra‐propargylated core scaffolds afforded a library of 18 tetravalent glycoclusters, in high yields, by CuI‐catalyzed azide–alkyne cycloaddition (CuAAC). The compounds were evaluated for their ability to bind to PA‐IL (the LecA lectin from the opportunistic pathogen Pseudomonas aeruginosa). Biochemical evaluation through inhibition of hemagglutination assays (HIA), enzyme‐linked lectin assays (ELLA), surface plasmon resonance (SPR), and isothermal titration microcalorimetry (ITC) revealed improved and unprecedented affinities for one of the monovalent probes (Kd=5.8 μM ) and also for a number of the tetravalent compounds that provide several new nanomolar ligands for this tetrameric lectin.  相似文献   

10.
A library of saturated bridged heterocycles based on 3,6-diazabicyclo[3.2.1]octane-2,4-dione and bispidine scaffolds (mean compound molecular weight is approximately 300 Da) with up to three stereocenters and four diversity points has been synthesized. Synthetic scaffold modifications leading to an increase in molecular complexity were studied. Well-defined stereochemical structures of both compound sets was confirmed by X-ray studies and halogenoaryl substituents were inserted appropriately for the design of novel non-basic serine protease inhibitors. Comprehensive molecular modeling has been performed for all synthesized compounds giving rationales of ligand–enzyme interactions with thrombin and trypsin. Biological testing confirmed moderate inhibitory activity of halogen-substituted saturated diazabicyclic small molecules towards thrombin.  相似文献   

11.
Branched organic nanostructures are useful scaffolds that find multiple applications in a variety of fields. Here, we present a novel approach to dendrimer‐like structures. Our design contains a rigid hydrocarbon‐based core (hexaphenylxylylene/tetraethynylphenylmethane) combined with a library of N‐substituted oligoglycines (so‐called peptoids) providing a flexible shell. The use of click chemistry allows rapid assembly of the nanostructures. The possibility of tuning the size and the solubility of this new type of nanostructure will be advantageous for future applications such as heterogeneous catalysis.  相似文献   

12.
The vast majority of scaffolds found in natural products are absent from the currently available compound collections for biological screening. At the same time, scaffolds derived from natural products may have a distinct advantage over non-natural cores in terms of providing compounds endowed with biological activities and should be used extensively in screening library design. We have developed a synthetic approach to merging a naturally occurring 1-azaadamantane core with a vicinal amino alcohol moiety that is also common in natural product chemical space. The synthesis features diastereoselective epoxidation of racemic chiral 2,6-diaryl-4-methylene 1-azaadamantanes with subsequent SN2-type epoxide opening in aqueous isopropanol.  相似文献   

13.
The use of tubulin as a target to influence the composition of the mixture from a dynamic combinatorial library, based on the disulfide bond exchange reaction, is described. ESI-FT-ICR-MS was used to determine the composition of the library. The heterodimeric compound amplified by this approach was used to design the homologous derivative with a two-carbon spacer in place of the disulfide function. The ability of the compounds to inhibit tubulin polymerization is reported and compared to thiocolchicine.  相似文献   

14.
Oxindoles and iso-oxindoles are natural product-derived scaffolds that provide inspiration for the design and synthesis of novel biologically relevant compound classes. Notably, the spirocyclic connection of oxindoles with iso-oxindoles has not been explored by nature but promises to provide structurally related compounds endowed with novel bioactivity. Therefore, methods for their efficient synthesis and the conclusive discovery of their cellular targets are highly desirable. We describe a selective RhIII-catalyzed scaffold-divergent synthesis of spirooxindole–isooxindoles and spirooxindole–oxindoles from differently protected diazooxindoles and N-pivaloyloxy aryl amides which includes a functional group-controlled Lossen rearrangement as key step. Unbiased morphological profiling of a corresponding compound collection in the Cell Painting assay efficiently identified the mitotic kinesin Eg5 as the cellular target of the spirooxindoles, defining a unique Eg5 inhibitor chemotype.  相似文献   

15.
The CB2 receptor is an attractive target for the treatment of a wide range of diseases and pathological conditions. Compounds that selectively activate the CB2 receptor are desirable as this avoids CB1-mediated psychoactive effects. Heteroarylidene-benzamides have demonstrated efficacy as selective CB2 receptor agonists. We aimed to expand the structure-activity relationship studies of this series of compounds by investigating the heteroaromatic core via the synthesis and in vitro evaluation of a small library of various heteroaromatic benzamide analogues. As heteroaromatic amides are privileged scaffolds in drug design, methods to synthesise them are of interest. Concise and reliable synthetic strategies were developed to access these novel analogues. The –ylidene-benzamide moiety is shown to be essential for CB activity as all amide derivatives exhibit no functional activity at either CB2 or CB1 receptors.  相似文献   

16.
In the search for new bioactive compounds, there is a trend toward increasingly complex compound libraries aiming to target the demanding targets of the future. In contrast, medicinal chemistry and traditional library design rely mainly on a small set of highly established and robust reactions. Here, we probe a set of 58 such reactions for their ability to sample the chemical space of known bioactive molecules, and the potential to create new scaffolds. Combined with ~26,000 common available building blocks, the reactions retrieve around 9% of a scaffold-diverse set of compounds active on human target proteins covering all major pharmaceutical target classes. Almost 80% of generated scaffolds from virtual one-step synthesis products are not present in a large set of known bioactive molecules for human targets, indicating potential for new discoveries. The results suggest that established synthesis resources are well suited to cover the known bioactivity-relevant chemical space and that there are plenty of unexplored regions accessible by these reactions, possibly providing valuable "low-hanging fruit" for hit discovery.  相似文献   

17.
Due to their diverse range of biological activities, imidazoheterocycles are recognized as privileged structures making these structural motifs attractive targets for library preparation. We report herein the synthesis of a sizable collection of imidazo[1,2- a]heterocycle scaffolds well-suited for divergent library preparation by virtue of amine functional handles with diverse positioning and connectivities. Partial reduction of imidazo[1,2- a]pyrazines to the tetrahydroimidazo[1,2- a]pyrazines and regiospecific Mannich-type bond formation at the C-3 of imidazo[1,2- a]pyridine under mild conditions achieved additional topological and connective diversity within the scaffold collection. Subsequent parallel reaction of the functionalized imidazoheterocycles with polystyrene-tetrafluorophenol esters and sulfonates produced a 7500 compound library in high purity.  相似文献   

18.
Connecting two porphyrin units in a rigid linear fashion, without any undesired electron delocalization or communication between the chromophores, remains a synthetic challenge. Herein, a broad library of functionally diverse multi-porphyrin arrays that incorporate the non-traditional rigid linker groups cubane and bicyclo[1.1.1]pentane (BCP) is described. A robust, reliable, and versatile synthetic procedure was employed to access porphyrin-cubane/BCP-porphyrin arrays, representing the largest non-polymeric structures available for cubane/BCP derivatives. These reactions demonstrate considerable substrate scope, from utilization of small phenyl moieties to large porphyrin rings, with varying lengths and different angles. To control conformational flexibility, amide bonds were introduced between the bridgehead carbon of BCP/cubane and the porphyrin rings. Through varying the orientation of the substituents around the amide bond of cubane/BCP, different intermolecular interactions were identified through single crystal X-ray analysis. These studies revealed non-covalent interactions that are the first-of-their-kind including a unique iodine-oxygen interaction between cubane units. These supramolecular architectures indicate the possibility to mimic a protein structure due to the sp3 rigid scaffolds (BCP or cubane) that exhibit the essential conformational space for protein function while simultaneously providing amide bonds for molecular recognition.  相似文献   

19.
Method development for a heterocyclic library which entails novel scaffolds of benzodiazepines fused with various heterocycles, such as pyrimidines, indolines, and tetrahydroquinolines, was accomplished. The new synthetic strategy is based on an electrophilic cyclization reaction involving an iminium intermediate formed by the corresponding aminopyrimidine with a carbonyl compound to give the desired heterocycles in high yields. Subsequent replacement of the chloro group in the resulted structures with a nucleophile, such as boronic acids, amines, alcohols and thiols, led to a library of privileged compounds with up to eight accessible diversity points.  相似文献   

20.
The significant advancements in asymmetric organocascade reactions have been accomplished during the past decades, paving the way to the efficient and stereoselective construction of structurally complex scaffolds from simple and readily available starting materials. Nitro‐containing cyclic compounds have become a privileged molecular library given their broad and promising activities in various therapeutic areas. In various approaches to build these valuable scaffolds, the utility of γ‐nitrocarbonyl intermediates is one of the most efficient approaches due to its high efficiency, reliability and versatility. The strategies and catalyst systems described here highlight recent advances in the enantioselective synthesis of nitro‐containing cyclic molecules via organocascade strategies based on γ‐nitrocarbonyl intermediates. Various organocatalysts with distinct activation modes have found application in providing these sophisticated compounds. This review is organized according to the types of organocatalyst. These methods are of importance for the construction of complex chiral cyclic frameworks and the design of new pharmaceutical compounds. We believe that compounds based on nitro‐containing cyclic skeletons have the potential to provide novel therapeutic agents and useful biological tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号