首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Supramolecular polymers have attracted plenty of interest in the scientific community; however, developing controllable methods of supramolecular polymerization remains a serious challenge. This article reviews some recent developments of methods for supramolecular polymerization from controllable fabrication to living polymerization. Three facile methods with general applicability for controllable fabrication of supramolecular polymers have been established recently: the first method is a self‐sorting approach by manipulating ring–chain equilibrium based on noncovalent control over rigidity of monomers; the second is covalent polymerization from supramonomers formed by noncovalent interactions; and the third is supramolecular interfacial polymerization. More excitingly, living supramolecular polymerization has been achieved by two elegant strategies, including seeded supramolecular polymerization under pathway complexity control and chain‐growth supramolecular polymerization by metastable monomers. It is anticipated that this review may provide some guidance for precise fabrication of supramolecular polymers, leading to the construction of supramolecular polymeric materials with controllable architectures and functions.  相似文献   

2.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

3.
Topics concerning the cationic ring‐opening polymerization of cyclic imino ethers and functional material production based on the resulting polymers are reviewed. Cyclic imino ethers are readily subjected to isomerization polymerization via cationic initiators. Mechanistic studies have provided a new concept, electrophilic polymerization. Double isomerization polymerization and no‐catalyst alternating copolymerization are interesting examples that show characteristics of the ring opening of cyclic imino ethers. The living polymerization of these monomers affords precisely controlled polymeric materials. Through the use of the unique properties of the product polymers, various functional polymeric materials, such as polymeric nonionic surfactants, compatibilizers, hydrogels, stabilizers for dispersion polymerization, biocatalyst modifiers, and supramolecular assemblies, have been developed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 192–209, 2002  相似文献   

4.
The integration of tailorable mechanical properties, dimensional stability, and reprocessability is of significance in the design of sustainable polymer materials. Herein, side-chain engineering is employed to fabricate cross-linked supramolecular polymers with customizable mechanical properties. Three kinds of side chains, including methyl, 1-ethyl pentyl, and 1-hexyl nonyl, are used to modify the supramonomers. Through the copolymerization of low-content supramonomers and covalent monomers, cross-linked supramolecular polyureas with a wide range of mechanical properties spanning from rigid plastics to elastic materials are successfully constructed. Specifically, the Young's modulus can be adjusted from 525 to 128 MPa by tuning the side chain of supramonomers from methyl to 1-hexyl nonyl. Meanwhile, the materials still retain exceptional recyclability and solvent resistance. Even after seven generations of recycling processes, the reprocessed cross-linked supramolecular polyureas maintain over 95% of their original mechanical properties. It is anticipated that side-chain engineering is a facile method for designing customized polymer materials to achieve both tailored mechanical properties and desirable functions.  相似文献   

5.
A new methacrylate containing a 2,6‐diacylaminopyridine (DAP) group was synthesized and polymerized via RAFT polymerization to prepare homopolymethacrylates (PDAP) and diblock copolymers combined with a poly(methyl methacrylate) block (PMMA‐b‐PDAP). These polymers can be easily complexed with azobenzene chromophores having thymine (tAZO) or carboxylic groups with a dendritic structure (dAZO), which can form either three or two hydrogen bonds with the DAP groups, respectively. The supramolecular polymers were characterized by spectroscopic techniques, optical microscopy, TGA, and DSC. The supramolecular polymers and block copolymers with dAZO exhibited mesomorphic properties meanwhile with tAZO are amorphous materials. The response of the supramolecular polymers to irradiation with linearly polarized light was also investigated founding that stable optical anisotropy can be photoinduced in all the materials although higher values of birefringence and dichroism were obtained in polymers containing the dendrimeric chromophore dAZO. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3173–3184  相似文献   

6.
《化学:亚洲杂志》2018,13(19):2818-2823
The development of artificial self‐assembling systems with dynamic photo‐regulation features in aqueous solutions has drawn great attention owing to the potential applications in fabricating elaborate biological materials. Here we demonstrate the fabrication of water‐soluble cucurbit[8]uril (CB[8])‐mediated supramolecular polymers by connecting the fluorinated azobenzene (FAB) containing monomers through host‐enhanced heteroternary π–π stacking interactions. Benefiting from the unique visible‐light‐induced EZ photoisomerization of the FAB photochromophores, the encapsulation behaviors between the CB[8] macrocycle and the monomers could be regulated upon visible light irradiation, resulting in the depolymerization of such CB[8]‐mediated supramolecular polymers.  相似文献   

7.
The idea to synthesize and self-assemble nano-graphenes with structural precision into supramolecular polymers is just one of Klaus Müllen's many pioneering contributions to the chemical sciences. To honor his impact in the field of polymer science, we here describe a study that combines experimental and computational methods in studying the stability of kinetically trapped states of supramolecular polymers. We show that the introduction of stereocenters in the sidechains allow helical supramolecular polymers based on chiral triphenylene-2,6,10-tricarboxamide monomers to escape a kinetic trap more efficiently than polymers based on their achiral analogs. Partial depolymerization of the kinetically trapped state by increasing the temperature followed by polymerization by lowering the temperature shows that monomers either polymerize on existing stacks or self-nucleate to form the thermodynamically more stable state. Chiral monomers prefer the latter more than achiral monomers.  相似文献   

8.
A new method of supramolecular polymerization at the water–oil interface is developed. As a demonstration, an oil‐soluble supramonomer containing two thiol end groups linked by two ureidopyrimidinone units and a water‐soluble monomer bearing two maleimide end groups are employed. Supramolecular interfacial polymerization can be implemented by a thiol–maleimide click reaction at the water–chloroform interface to obtain supramolecular polymeric films. The glass transition temperature of such supramolecular polymers can be well‐tuned by simply changing the polymerization time and temperature. It is highly anticipated that this work will provide a facile and general approach to realize control over supramolecular polymerization by transferring the preparation of supramolecular polymers from solutions to water–oil interfaces and construct supramolecular materials with well‐defined properties.  相似文献   

9.
与共价键聚合物由单体(M1)通过共价键连接不同,超分子聚合物是由单体(M2)通过非共价键连接而成的长链大分子。聚合包括分子聚合和超分子聚合。超分子聚合描述M2通过非共价键自组装形成超分子聚合物的过程,涉及氢键、π-π堆砌型和立体匹配等驱动力以及分子识别、协同性等特征,与M1通过共价键形成聚合物的过程(分子聚合)不同。为了理解超分子聚合物链结构形成机理,本文分析和讨论超分子聚合的三个主要机理:(1)线性链生长;(2)螺旋链生长;(3)拓扑链生长。  相似文献   

10.
Hydrogen‐bonded supramolecular polymers were prepared from the derivatives of α‐amino‐ε‐caprolactam (ACL), obtained from a renewable resource. Several self‐complimentary bis‐ or tetra‐caprolactam monomers were synthesized by varying the number of carbons of the spacer between the hydrogen‐bonding end groups. Physical properties of these hydrogen‐bonded polymers were clearly demonstrated by differential scanning colorimetry, solid‐state NMR, and X‐ray powder diffraction analyses. The supramolecular behavior was also supported by fiber formation from the melt for several of these compounds, and stable glassy materials were prepared from the physical mixtures of two different biscaprolactams. The self‐association ability of ACL was also used by incorporating ACL at the chain ends of low‐molecular weight Jeffamine (Mn = 900 g/mol) using urea and amide linkages. The transformation of this liquid oligomer at room temperature into a self‐standing, transparent film clearly showed the improvement in mechanical properties obtained by the introduction of terminal hydrogen‐bonding groups. Finally, the use of monomers with a functionality of four gave rise to network formation either alone or combination with bifunctional monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Two bola‐amphiphilic small molecules, based on the diphenylanthracene skeleton structure, namely, BASM‐1 and its functionalized small molecule BASM‐2 , were designed and synthesized. The self‐assembly behavior and mechanism of these two molecules in aqueous solution were studied. The supramolecular two‐dimensional (2D) layer and the covalent 2D polymers were, respectively, prepared by these two molecules. What is more, the transverse size of the covalent 2D polymer laminates increased with the extension of the polymerization time. Atomic force microscopy results showed that both free‐standing single‐layer 2D polymers and few layer laminates with two to three molecular layers were obtained. So our work provides a simple and efficient method for directly preparing independent both supramolecular 2D polymers and covalent 2D polymers in liquid phase which is of great significance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1748–1755  相似文献   

12.
We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol?1 are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non‐polar solvents or in the bulk. Hierarchical self‐assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well‐ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations.  相似文献   

13.
The success of exploiting cucurbit[n]uril (CB[n])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3105–3109  相似文献   

14.
Developing new materials with unique properties for nanotechnology applications, in general, and supramolecular polymers, in particular, lie at the heart of much ongoing research. In line with these efforts, we have been exploring polymers containing terpyridine (terpy) in the side chain. Here we report a new monomer that effectively undergoes reversible addition fragmentation chain transfer polymerization (RAFT) to yield high‐molecular‐weight (Mn) polymers with narrow polydispersity (PDI). The monomer is an N‐succinimide activated ester of p‐vinyl benzoic acid. Under RAFT conditions, poly(N‐succinimide p‐vinylbenzoate)s were generated, with Mn ranging between 44 and 61 kDa and PDI of 1.03–1.07. One of these homopolymers was reacted with an amine functionalized terpy, creating a new homopolymer containing terpy ligands on every monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5618–5625, 2007  相似文献   

15.
C3-Symmetric triarylamine trisamides (TATAs), decorated with three norbornene end groups, undergo supramolecular polymerization and further gelation by π–π stacking and hydrogen bonding of their TATA cores. By using subsequent ring-opening metathesis polymerization, these physical gels are permanently crosslinked into chemical gels. Detailed comparisons of the supramolecular stacks in solution, in the physical gel, and in the chemical gel states, are performed by optical spectroscopies, electronic spectroscopies, atomic force microscopy, electronic paramagnetic resonance spectroscopy, X-ray scattering, electronic transport measurements, and rheology. The results presented here clearly evidence that the core structure of the functional supramolecular polymers can be precisely retained during the covalent capture whereas the mechanical properties of the gels are concomitantly improved, with an increase of their storage modulus by two orders of magnitude.  相似文献   

16.
A terpyridine‐functionalized alkoxyamine unimolecular initiator was used for the nitroxide‐mediated controlled living radical polymerization of n‐butylacrylate, N,N‐dimethylacrylamide, 4‐vinylpyridine, 2‐vinylpyridine, and isoprene. For the former three monomers, the kinetics were studied. All polymerizations resulted in well‐defined polymers having a single terpyridine ligand at the chain end and narrow polydispersity indices. The obtained polymers are valuable building blocks for metallo‐supramolecular polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6331–6344, 2005  相似文献   

17.
Among various two-dimensional (2D) materials, organic 2D polymers have attracted much attention, owing to their specific properties, such as lightweight, good flexibility, adjustable structure, and high adaptability. In recent years, more and more scientists have devoted to the research on their structural design, synthesis, characterization, and potential properties. However, in contrast to traditional one-dimensional (1D) and three-dimensional (3D) network macromolecules, the synthesis of 2D structures presents a challenge to polymer chemists, because polymerization usually takes place in a spatially random manner in solution-phase synthesis. In this review, we will focus on the synthesis methods of organic 2D materials, which have played a pivotal role since the beginning of the development of this field. We will highlight the representative examples according to the different types of polymers, including supramolecular organic 2D layers and covalent organic 2D polymers, and identify possible future research directions.  相似文献   

18.
Stereoselective and temporally controlled supramolecular polymerizations are ubiquitous in nature and are desirable attributes for the design of chiral, well-defined functional materials. Kinetically controlled, living supramolecular polymerization (LSP) has emerged recently for the synthesis of supramolecular polymers with controlled length and narrow dispersity. On the other hand, stringent design requirements for chiral-discriminating monomers precludes the stereoselective control of the supramolecular polymer structure. Herein, a synergetic stereo- and structural control of supramolecular polymerization by the realization of an unprecedented stereoselective seed-induced LSP is reported. Homochiral and seeded growth is demonstrated with bischromophoric naphthalene diimide (NDI) enantiomers with a chiral binaphthyl amine core, exhibiting strong self-recognition abilities and pathway complexity.  相似文献   

19.
Two types of supramolecular polymers based on cyclodextrins were prepared. One was a host–guest type, and the other was a polyrotaxane type. When a guest part was covalently attached to cyclodextrin, they formed supramolecular dimers, a cyclic daisy chain, supramolecular oligomers, and polymers. t-Boc-cinnamamide-α-cyclodextrin was found to form chiral supramolecular polymers in aqueous solutions. Supramolecular poly[2]rotaxane polymers and supramolecular α,β-cyclodextrin copolymers were obtained. Polyrotaxanes containing β-cyclodextrin or γ-cyclodextrin were prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5113–5119, 2006  相似文献   

20.
Biomaterials based on non‐active polymers functionalized with antimicrobial agents by covalent modification or mixing are currently regarded as high potential solutions to prevent biomaterial associated infections that are major causes of biomedical device failure. Herewith a strategy is proposed in which antimicrobial materials are prepared by simply mixing‐and‐matching of ureido‐pyrimidinone (UPy) based supramolecular polymers with antimicrobial peptides (AMPs) modified with the same UPy‐moiety. The N‐terminus of the AMPs was coupled in solution to an UPy‐carboxylic acid synthon resulting in formation of a new amidic bond. The UPy‐functionalization of the AMPs did not affect their secondary structure, as proved by circular dichroism spectroscopy. The antimicrobial activity of the UPy‐AMPs in solution was also retained. In addition, the incorporation of UPy‐AMPs into an UPy‐polymer was stable and the final material was biocompatible. The addition of 4 mol % of UPy‐AMPs in the UPy‐polymer material protected against colonization by Escherichia coli, and methicillin‐sensitive and ‐resistant strains of Staphylococcus aureus. This modular approach enables a stable but dynamic incorporation of the antimicrobial agents, allowing at the same time for the possibility to change the nature of the polymer, as well as the use of AMPs with different activity spectra. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1926–1934  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号