首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Main‐group complexes are shown to be viable electrocatalysts for the H2‐evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton‐reduction catalytic properties of TPSb(OH)2 (TP=5,10,15,20‐tetra(p ‐tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox‐active ligands during catalysis.  相似文献   

2.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

3.
Molecular assemblies of metalloporphyrins trans‐dichloro(5,10,15,20‐tetra‐p‐tolylporphyrinato)tin(IV) (SnCl2TPPMe) and trans‐dihydroxo(5,10,15,20‐tetra‐p‐tolylporphyrinato)tin(IV) (Sn(OH)2TPPMe), which have two trans axial ligands, as well 5,10,15,20‐tetrakis(4‐methoxyphenyl)‐21H,23H‐porphine iron(III) chloride (FeClTPPOMe) and 5,10,15,20‐tetraphenyl‐21H,23H‐porphine manganese(III) chloride (MnClTPP), which have one axial ligand, are interfacially organized by Langmuir and Langmuir–Blodgett (LB) techniques. SnCl2TPPMe and Sn(OH)2TPPMe form nanofibrous structures which can display distinct supramolecular chirality, although the molecular units themselves are achiral, while FeClTPPOMe and MnClTPP form irregular nanoparticles that display negligible supramolecular chirality. An interpretation in terms of the effects of the axial ligands is proposed for this interesting phenomenon. Moreover, compared with assemblies of the diprotonated free‐base porphyrins, which are fabricated by interfacial (air/2.4 M HCl) organization of free‐base porphyrin, those of SnCl2TPPMe and Sn(OH)2TPPMe display higher stability in terms of supramolecular chirality. These results indicate that the assembly properties of metalloporphyrins can essentially be affected by the axial ligands that are attached to their chromophores, and that stable chiral porphyrin supramolecular associations can be easily produced by using achiral metalloporphyrins bearing two trans axial ligands.  相似文献   

4.
《中国化学会会志》2018,65(8):908-917
We study the structural and energetic properties of binary ionic porphyrin molecular complexes [H4TPPS4]2−∙∙∙SnTP using quantum chemical techniques. As the axial ligands and the protonation of pyridine sites highly influence the structure and coordination of metal‐containing porphyrin, various structures of SnTP in the presence and absence of axial ligands and pyridine protons were considered. The constructed porphyrins were then made to interact face to face, and the formed complexes were optimized at the HF/STO‐3G level of theory. The stability and stack‐like interaction of the complexes were analyzed through interplanar spacing, planar angle, and edge‐to‐edge distance. The structural parameters emphasize the importance of axial ligands for the formation of stack‐like structures. The complex that contains axial ligands with pyridine protons, namely [H4TPPS4]2−∙∙∙[X'SnXTPH]4+, shows a perfectly stacked layer with a reasonable interplanar distance, which is confirmed from the calculated counterpoise interaction and deformation energies. The energetic parameters were found to correlate well with the obtained geometries. The molecular electrostatic potential (MEP) maps were obtained to infer the presence of nonbonded interaction between the binary ionic porphyrins.  相似文献   

5.
`Picket‐fence' porphyrin compounds are used in the investigation of interactions of hemes with dioxygen, carbon monoxide, nitric monoxide and imidazole ligands. (Cryptand‐222)potassium chlorido[meso‐tetra(α,α,α,α‐o‐pivalamidophenyl)porphyrinato]manganese tetrahydrofuran monosolvate (cryptand‐222 is 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane), [K(C18H36N2O6)][Mn(C64H64N8O4)Cl]·C4H8O or [K(222)][Mn(TpivPP)Cl]·THF [systematic name for TpivPP: 5,10,15,20‐tetrakis(2‐tert‐butanamidophenyl)porphyrin], is a five‐coordinate high‐spin manganese(II) picket‐fence porphyrin complex. It crystallizes with a potassium cation chelated inside a cryptand‐222 molecule; the average K—O and K—N distances are 2.83 (4) and 2.995 (13) Å, respectively. All four protecting tert‐butyl pickets of the porphyrin are ordered. The porphyrin plane is nearly planar, as indicated by the atomic displacements and the dihedral angles between the mean planes of the pyrrole rings and the 24‐atom mean plane. The axial chloride ligand is located inside the molecular cavity on the hindered porphyrin side and the Mn—Cl bond is tilted slightly off the normal to the porphyrin plane by 3.68 (2)°. The out‐of‐plane displacement of the metal centre relative to the 24‐atom mean plane (Δ24) is 0.7013 (4) Å, indicating a noticeable porphyrin core doming.  相似文献   

6.
The new clusters [H4Ru4(CO)10(μ‐1,2‐P‐P)], [H4Ru4(CO)10(1,1‐P‐P)] and [H4Ru4(CO)11(P‐P)] (P‐P=chiral diphosphine of the ferrocene‐based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal–metal bond of the ruthenium tetrahedron in the “conventional” manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H4Ru4(CO)10(1,1‐Walphos)] clusters isomerise to the corresponding [H4Ru4(CO)10(μ‐1,2‐Walphos)] clusters, whereas the Josiphos‐containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α‐unsaturated carboxylic acids and the prochiral methyl ester (E)‐methyl 2‐methylbut‐2‐enoate. High conversion rates (>94 %) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos‐containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99–100 %), product selectivities (99–100 % in most cases) and good enantioselectivities, reaching 90 % enantiomeric excess (ee) in certain cases, were observed for the Walphos‐containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high‐pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters (P‐P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P‐P)(carboxylato)2] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species.  相似文献   

7.
A nickel(II) porphyrin Ni‐P (P=porphyrin) bearing four meso‐C6F5 groups to improve solubility and activity was used to explore different hydrogen‐evolution‐reaction (HER) mechanisms. Doubly reduced Ni‐P ([ Ni‐P ]2?) was involved in H2 production from acetic acid, whereas a singly reduced species ([ Ni‐P ]?) initiated HER with stronger trifluoroacetic acid (TFA). High activity and stability of Ni‐P were observed in catalysis, with a remarkable ic/ip value of 77 with TFA at a scan rate of 100 mV s?1 and 20 °C. Electrochemical, stopped‐flow, and theoretical studies indicated that a hydride species [H‐ Ni‐P ] is formed by oxidative protonation of [ Ni‐P ]?. Subsequent rapid bimetallic homolysis to give H2 and Ni‐P is probably involved in the catalytic cycle. HER cycling through this one‐electron‐reduction and homolysis mechanism has been proposed previously but rarely validated. The present results could thus have broad implications for the design of new exquisite cycles for H2 generation.  相似文献   

8.
This study targets the construction of porphyrin assemblies directed by halogen bonds, by utilizing a series of purposely synthesized Sn(axial ligand)2–(5,10,15,20‐tetraarylporphyrin) [Sn(L)2‐TArP] complexes as building units. The porphyrin moiety and the axial ligands in these compounds contain different combinations of complimentary molecular recognition functions. The former bears p‐iodophenyl, p‐bromophenyl, 4′‐pyridyl, or 3′‐pyridyl substituents at the meso positions of the porphyrin ring. The latter comprises either a carboxylate or hydroxy anchor for attachment to the porphyrin‐inserted tin ion and a pyridyl‐, benzotriazole‐, or halophenyl‐type aromatic residue as the potential binding site. The various complexes were structurally analyzed by single‐crystal X‐ray diffraction, accompanied by computational modeling evaluations. Halogen‐bonding interactions between the lateral aryl substituents of one unit of the porphyrin complex and the axial ligands of neighboring moieties was successfully expressed in several of the resulting samples. Their occurrence is affected by structural (for example, specific geometry of the six‐coordinate complexes) and electronic effects (for example, charge densities and electrostatic potentials). The shortest intermolecular I???N halogen‐bonding distance of 2.991 Å was observed between iodophenyl (porphyrin) and benzotriazole (axial ligand) moieties. Manifestation of halogen bonds in these relatively bulky compounds without further activation of the halophenyl donor groups by electron‐withdrawing substituents is particularly remarkable.  相似文献   

9.
A combined experimental and density functional theory (DFT) investigation was employed in order to examine the mechanism of electrochemical CO2 reduction and H2 formation from water reduction in neutral aqueous solutions. A water soluble cobalt porphyrin, cobalt [5,10,15,20-(tetra-N-methyl-4-pyridyl)porphyrin], (CoTMPyP), was used as catalyst. The possible attachment of different axial ligands as well as their effect on the electrocatalytic cycles were examined. A cobalt porphyrin hydride is a key intermediate which is generated after the initial reduction of the catalyst. The hydride is involved in the formation of H2 and formate and acts as an indirect proton source for the formation of CO in these H+-starving conditions. The experimental results are in agreement with the computations and give new insights into electrocatalytic mechanisms involving water soluble metalloporphyrins. We conclude that in addition to the porphyrin's structure and metal ion center, the electrolyte surroundings play a key role in dictating the products of CO2/H2O reduction.  相似文献   

10.
Aerogels are fascinating materials that can be used for a wide range of applications, one of which is electrocatalysis of the important oxygen reduction reaction. In their inorganic form, aerogels can have ultrahigh catalytic site density, high surface area, and tunable physical properties and chemical structures—important features in heterogeneous catalysis. Herein, we report on the synthesis and electrocatalytic properties of an iron–porphyrin aerogel. 5,10,15,20-(Tetra-4-aminophenyl)porphyrin (H2TAPP) and FeII were used as building blocks of the aerogel, which was later heat-treated at 600 °C to enhance electronic conductivity and catalytic activity, while preserving its macrostructure. The resulting material has a very high concentration of atomically dispersed catalytic sites (9.7×1020 sites g−1) capable of catalyzing the oxygen reduction reaction in alkaline solution (Eonset=0.92 V vs. RHE, TOF=0.25 e site−1 s−1 at 0.80 V vs. RHE).  相似文献   

11.
Aerogels are fascinating materials that can be used for a wide range of applications, one of which is electrocatalysis of the important oxygen reduction reaction. In their inorganic form, aerogels can have ultrahigh catalytic site density, high surface area, and tunable physical properties and chemical structures—important features in heterogeneous catalysis. Herein, we report on the synthesis and electrocatalytic properties of an iron–porphyrin aerogel. 5,10,15,20‐(Tetra‐4‐aminophenyl)porphyrin (H2TAPP) and FeII were used as building blocks of the aerogel, which was later heat‐treated at 600 °C to enhance electronic conductivity and catalytic activity, while preserving its macrostructure. The resulting material has a very high concentration of atomically dispersed catalytic sites (9.7×1020 sites g?1) capable of catalyzing the oxygen reduction reaction in alkaline solution (Eonset=0.92 V vs. RHE, TOF=0.25 e? site?1 s?1 at 0.80 V vs. RHE).  相似文献   

12.
A porous rtl metal–organic framework (MOF) [Mn5L(H2O)6?(DMA)2]?5DMA?4C2H5OH ( 1? Mn) (H10L=5,10,15,20‐tetra(4‐(3,5‐dicarboxylphenoxy)phenyl)porphyrin; DMA=N,N′‐dimethylacetamide) was synthesized by employing a new porphyrin‐based octacarboxylic acid ligand. 1? Mn exhibits high MnII density in the porous framework, providing it great Lewis‐acid heterogeneous catalytic capability for the cycloaddition of CO2 with epoxides. Strikingly, 1? Mn features excellent catalytic activity to the cycloaddition of CO2 to epoxides, with a remarkable initial turnover frequency 400 per mole of catalyst per hour at 20 atm. As‐synthesized 1? Mn also exhibits size selectivity to different epoxide substrates on account of their steric hindrance. The high catalytic activity, size selectivity, and stability toward the epoxides on catalytic cycloaddition of CO2 make 1? Mn a promising heterogeneous catalyst for fixation and utilization of CO2.  相似文献   

13.
The nucleophilic attack of water or hydroxide on metal-oxo units forms an O−O bond in the oxygen evolution reaction (OER). Coordination tuning to improve this attack is intriguing but has been rarely realized. We herein report on improved OER catalysis by metal porphyrin 1-M (M=Co, Fe) with a coordinatively unsaturated metal ion. We designed and synthesized 1-M by sterically blocking one porphyrin side with a tethered tetraazacyclododecane unit. With this protection, the metal-oxo species generated in OER can maintain an unoccupied trans axial site. Importantly, 1-M displays a higher OER activity in alkaline solutions than analogues lacking such an axial protection by decreasing up to 150-mV overpotential to achieve 10 mA/cm2 current density. Theoretical studies suggest that with an unoccupied trans axial site, the metal-oxo unit becomes more positively charged and thus is more favoured for the hydroxide nucleophilic attack as compared to metal-oxo units bearing trans axial ligands.  相似文献   

14.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

15.
The title di­phenyl­carbene porphyrin complex (di­phenyl­carbenyl‐κC)(methanol‐κO)(5,10,15,20‐tetra‐p‐tolyl­por­phy­rin­ato‐κ4N)ruthenium(II) methanol solvate, [Ru­(C13H10)(C48H36N4)(CH4O)]·CH4O, has a six‐coordinate Ru atom with a methanol mol­ecule as the second axial ligand. The carbene fragment is slightly distorted from an ideal sp2 configuration, with a C(phenyl)—C(carbene)—C(phenyl) angle of 112.2 (3)°. The Ru—C bond length of 1.845 (3) Å is comparable with other carbene complexes. The two phenyl rings of the carbene ligand are perpendicular to the carbene plane. Methanol solvate mol­ecules link the methanol ligands of adjacent porphyrin complexes via hydrogen bonds.  相似文献   

16.
Selective two-electron reduction of dioxygen (O2) to hydrogen peroxide (H2O2) has been achieved by two saddle-distorted N,N’-dimethylated porphyrin isomers, an N21,N’22-dimethylated porphyrin ( anti -Me2P ) and an N21,N’23-dimethylated porphyrin ( syn -Me2P ) as catalysts and ferrocene derivatives as electron donors in the presence of protic acids in acetonitrile. The higher catalytic performance in an oxygen reduction reaction (ORR) was achieved by anti -Me2P with higher turnover number (TON=250 for 30 min) than that by syn -Me2P (TON=218 for 60 min). The reactive intermediates in the catalytic ORR were confirmed to be the corresponding isophlorins ( anti -Me2Iph or syn -Me2Iph ) by spectroscopic measurements. The rate-determining step in the catalytic ORRs was concluded to be proton-coupled electron-transfer reduction of O2 with isophlorins based on kinetic analysis. The ORR rate by anti -Me2Iph was accelerated by external protons, judging from the dependence of the observed initial rates on acid concentrations. In contrast, no acceleration of the ORR rate with syn -Me2Iph by external protons was observed. The different mechanisms in the O2 reduction by the two isomers should be derived from that of the arrangement of hydrogen bonding of a O2 with inner NH protons of the isophlorins.  相似文献   

17.
Studying the axial ligation behavior of metalloporphyrins with nitrogenous bases helps to better understand not only the biological function of heme‐based protein systems, but also the catalytic properties of porphyrin‐based reaction sites in other biomimetic synthetic support environments. Unlike iron porphyrin complexes, little is known about the axial ligation behavior of Mn porphyrins, particularly in the solid state with Mn in the +3 oxidation state. Here, we present the syntheses and crystal and molecular structures of three new high‐spin manganese(III) porphyrin complexes with the different amine‐based axial ligands imidazole (im), piperidine (pip), and 1,4‐diazabicyclo[2.2.2]octane (DABCO), namely bis(imidazole)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride chloroform disolvate, [Mn(C44H28N4)(C3H4N2)2]Cl·2CHCl3 or [Mn(TPP)(im)2]Cl·2CHCl3 (TPP = 5,10,15,20‐tetraphenylporphyrin), (I), bis(piperidine)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride, [Mn(C44H28N4)(C5H11N)2]Cl or [Mn(TPP)(pip)2]Cl, (II), and chlorido(1,4‐diazabicyclo[2.2.2]octane)(5,10,15,20‐tetraphenylporphyrin)manganese(III)–1,4‐diazabicyclo[2.2.2]octane–toluene–water (4/4/4/1), [Mn(C44H28N4)Cl(C6H12N2)]·C6H12N2·C7H8·0.25H2O or [Mn(TPP)Cl(DABCO)]·(DABCO)·(toluene)·0.25H2O, (IV). A fourth complex, chlorido(pyridine)(5,10,15,20‐tetraphenylporphryinato)manganese(III) pyridine disolvate, [Mn(C44H28N4)Cl(C5H5N)]·2C5H5N or [Mn(TPP)Cl(py)]·2(py), (III), acquired using different crystallization methods from published data, is also reported and compared to the previous structures.  相似文献   

18.
Phenylazomethine dendrimers bearing a cobalt porphyrin core act as catalysts for CO2 reduction in the presence of a strong Lewis acid such as lanthanide trifluoromethanesulfonate (Ln(OTf)3). We investigated the catalytic activity using electrochemical measurements (cyclic voltammetry) on a glassy carbon electrode in a DMF solution. Dissolving CO2 gas into the solution, the cyclic voltammograms displayed an irreversible increase of the cathodic current. This result suggests the catalytic reduction of CO2. The redox potential (–1.3 V versus Fc/Fc+) at which the catalytic behavior was observed is 1.1 V higher than that catalyzed by cobalt tetraphenylporphyrin (CoTPP). The generation number (n) dependence of the dendrimer catalysts showed the maximum activity at n = 3. A significant decrease of the activity for the largest dendrimer (n = 4) indicates a steric effect, which prevents transmission of the substrate (CO2 molecule) and electrons to the catalytic center (cobalt porphyrin core). For more efficient catalysis, a novel open-shell dendrimer having a pocket on one side of the molecule was designed and synthesized. Because the accessibility to the core in the opened shell improved, this dendrimer exhibited the highest catalytic activity. These results suggest that tuning of the local domain around the cobalt porphyrin center would lead to a decisive solution for further activation of the CO2 molecule. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5229–5236, 2006  相似文献   

19.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

20.
Competitive oxygenation of cyclooctene and tetralin with sodium periodate catalyzed by Mn(III)(TPP)OAc, TPP = meso-tetraphenylporphyrin; Mn(III) (TNP)OAc, TNP =meso-tetrakis(1-naphthyl) porphyrin; Mn(III) (TMP)OAc, TMP =meso-tetrakis(2,4,6-trimethyl-phenyl)porphyrin; Mn(III) (TDCPP)OAc, TDCPP =meso-tetrakis(2,6-dichlorophenyl) porphyrin, and Mn(III) (TPNMe2-TFPP)OAc, TPNMe2-TFPP =meso-tetrakis(para-NMe2-tetrafluorophenyl)porphyrin, was carried out in the presence or absence of imidazole. This study showed that, in the absence of imidazole, selectivity for epoxide formation was high with electron-rich catalysts such as Mn(TPP)OAc, Mn(TNP)OAc and Mn(TMP)OAc, but low with electron-deficient catalysts such as Mn(TDCPP)OAc and Mn(TPNMe2-TFPP)OAc. Presumably, not only the axial ligation of imidazole to the four-coordinate Mn(III)-center, but also the steric and electronic influences of aryl-substituents on the porphyrin periphery affect the selectivity of the catalytic oxidation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号