首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coating solid surfaces with cellulose nanofibril (CNF) monolayers via physical deposition was found to keep the surfaces free of a variety of oils, ranging from viscous engine oil to polar n ‐butanol, upon water action. The self‐cleaning function was well correlated with the unique molecular structure of the CNF, in which abundant surface carboxyl and hydroxy groups are uniformly, densely, and symmetrically arranged to form a polar corona on a crystalline nanocellulose strand. This isotropic core–corona configuration offers new and easily adoptable guidance to design self‐cleaning surfaces at the molecular level. Thanks to its excellent self‐cleaning behavior, the CNF coating converted conventional meshes into highly effective membranes for oil–water separation with no prior surface treatment required.  相似文献   

2.
The counterions of polydiallyldimethylammonium (PDADMA) coatings were altered by incubation in aqueous solutions of different electrolytes. Oil de-wetting on the resulting polycationic surfaces upon water action exhibited a straightforward connection with the Jones–Dole viscosity B-coefficient () sign of surface counteranions. Upon water action, surface counteranions with negative render PDADMA coatings oil-adhering, but those with positive furnish PDADMA coatings with excellent self-cleaning. The oil-adhering PDADMA surfaces can become self-cleaning upon water action in response to the of surface counteranions sign-switching with increasing water temperature. Courtesy of surface counter-anions with >0, self-cleaning PDADMA coatings enable not only conversion of conventional meshes into self-cleaning membranes for oil/water separation, but also regioselective maneuver of oil flow on polycationic surfaces according to the sign of surface counteranions patterned atop.  相似文献   

3.
Self-cleaning of surfaces becomes challenging for energy harvesting devices because of the requirements of high optical transmittance of device surfaces. Surface texturing towards hydrophobizing can improve the self-cleaning ability of surfaces, yet lowers the optical transmittance. Introducing optical matching fluid, such as silicon oil, over the hydrophobized surface improves the optical transmittance. However, self-cleaning ability, such as dust mitigation, of the oil-impregnated hydrophobic surfaces needs to be investigated. Hence, solution crystallization of the polycarbonate surface towards creating hydrophobic texture is considered and silicon oil impregnation of the crystallized surface is explored for improved optical transmittance and self-cleaning ability. The condition for silicon oil spreading over the solution treated surface is assessed and silicon oil and water infusions on the dust particles are evaluated. The movement of the water droplet over the silicon oil-impregnated sample is examined utilizing the high-speed facility and the tracker program. The effect of oil film thickness and the tilting angle of the surface on the sliding droplet velocity is estimated for two droplet volumes. The mechanism for the dust particle mitigation from the oil film surface by the sliding water droplet is analyzed. The findings reveal that silicon oil impregnation of the crystallized sample surface improves the optical transmittance significantly. The sliding velocity of the water droplet over the thick film (~700 µm) remains higher than that of the small thickness oil film (~50 µm), which is attributed to the large interfacial resistance created between the moving droplet and the oil on the crystallized surface. The environmental dust particles can be mitigated from the oil film surface by the sliding water droplet. The droplet fluid infusion over the dust particle enables to reorient the particle inside the droplet fluid. As the dust particle settles at the trailing edge of the droplet, the sliding velocity decays on the oil-impregnated sample.  相似文献   

4.
The acetylation of cellulose nanofiber (CNF) introduced hydrophobicity to the surface making it compatible with non-polar matrix, and also making it an effective nanofiller for polychloroprene (PCR) composite. The CNF was extracted from oil palm empty fruit bunches. Previously, CNF was dispersed in water, and this water was subsequently substituted with N,N-dimethylacetamide, in which CNF was acetylated by acetic anhydride with a pyridine catalyst. IR spectroscopy revealed that the acetylation extent was controllable by the reaction time. After the reaction, the DMAc was replaced by dichloromethane, and finally mixed with PCR. The CNF–PCR mixture was cast and composite film was formed at room temperature. Structural analysis and mechanical tests indicated that acetylation treatment made CNF compatible with PCR, and that nano-dispersed CNF raised the mechanical strength of the PCR–CNF nanocomposite.  相似文献   

5.
A new π‐conjugated copolymer, namely, poly{cyanofluore‐alt‐[5‐(N,N′‐diphenylamino)phenylenevinylene]} ((CNF–TPA)n), was synthesized by condensation polymerization of 2,2′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)diacetonitrile and 5‐(N,N′‐diphenylamino)benzene‐1,3‐dicarbaldehyde by using the Knoevenagel reaction. By design, diphenylamine, alkylfluorene and poly(p‐phenylenevinylene) linkages were combined to form a (CNF–TPA)n copolymer which exhibits high thermal stability and glass‐transition temperature. Photodynamic measurements in polar benzonitrile indicate fast and efficient photoinduced electron transfer (≈1011 s?1) from triphenylamine (TPA) to cyanofluorene (CNF) to produce the long‐lived charge‐separated state (90 μs). The finding that the charge‐recombination process of (CNF.?–TPA.+)n is much slower than the charge separation in polar benzonitrile suggests a potential application in molecular‐level electronic and optoelectronic devices.  相似文献   

6.
The counterions of polydiallyldimethylammonium (PDADMA) coatings were altered by incubation in aqueous solutions of different electrolytes. Oil de‐wetting on the resulting polycationic surfaces upon water action exhibited a straightforward connection with the Jones–Dole viscosity B‐coefficient () sign of surface counteranions. Upon water action, surface counteranions with negative render PDADMA coatings oil‐adhering, but those with positive furnish PDADMA coatings with excellent self‐cleaning. The oil‐adhering PDADMA surfaces can become self‐cleaning upon water action in response to the of surface counteranions sign‐switching with increasing water temperature. Courtesy of surface counter‐anions with >0, self‐cleaning PDADMA coatings enable not only conversion of conventional meshes into self‐cleaning membranes for oil/water separation, but also regioselective maneuver of oil flow on polycationic surfaces according to the sign of surface counteranions patterned atop.  相似文献   

7.
Development of electrospun nanofiber membranes with the selective wettability characteristics for effectively separating oil–water mixtures is an extremely advisable strategy. In this study, a superhydrophobic electrospinning carbon nanofiber (F/ZnO/CNF) membrane was successfully prepared by electrospinning and in-situ growth of ZnO, and subsequent fluorination reaction with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (POTS). Benefiting from the influence of needle-like nanostructure and low surface energy, the as-prepared F/ZnO/CNF membrane shows excellent superhydrophobicity. When the growth duration of ZnO is 3 h, the obtained F/ZnO/CNF-3 membrane possesses outstanding water contact angle (WCA, 159.7°) and splendid oil–water separation efficiency (>99 %). Meanwhile, due to its the superior environmental stability the obtained F/ZnO/CNF-3 membrane exhibits excellent low and high temperature resistance, and enhanced resistance to various organic solvents in the face of a series of harsh environments.  相似文献   

8.
This study discusses the possibility of using a corona discharge at atmospheric pressure and air RF plasma at low pressure for the cotton fibre activation prior to deposition of colloidal TiO2 nanoparticles in order to enhance antibacterial, UV protective and self-cleaning properties. X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of TiO2 nanoparticles on the surface of cotton fibres. XPS elemental mapping indicated that TiO2 nanoparticles were more evenly distributed across the surface of untreated and corona pre-treated cotton fabrics in comparison with RF plasma pre-treated fabric. Atomic absorption spectroscopy measurements revealed that the equivalent total content of TiO2 in the cotton fabrics pre-treated by corona and RF plasma was 31% higher than in the fabric that did not undergo any treatment prior to loading of TiO2 nanoparticles. In order to achieve maximum bacteria (Gram-negative bacteria Escherichia coli) reduction, untreated cotton fabric had to be loaded with colloidal TiO2 nanoparticles twice, but only once following corona or RF plasma pre-treatment. Deposition of TiO2 nanoparticles onto cotton fabrics provided maximum UV protective rating of 50+. Extraordinary photocatalytic activity of TiO2 nanoparticles deposited onto cotton fabrics was proved by self-cleaning of blueberry juice stains and photodegradation of methylene blue in aqueous solution under UV illumination.  相似文献   

9.
介绍了仿生超疏表面的工作机制以及疏水整理液的发展, 系统综述了近10年来特殊浸润性在开拓多功能绿色纺织领域的研究进展, 讨论了双面超疏、 超疏/超亲、 图案化及可响应浸润性纺织品的制备技术及应用, 介绍近几年在纺织品疏水化功能改性方面取得的前瞻性工作, 包括自清洁防污、 油水分离、 机械耐久、 图案化、 自修复、 单向运输等, 特别是在智能响应、 电子可穿戴、 能源等新兴领域方面的应用. 最后, 对超疏水纺织功能材料目前所面临的挑战及未来发展的方向进行了展望.  相似文献   

10.
The surface wettabilities of polymer brushes with hydrophobic and hydrophilic functional groups were discussed on the basis of conventional static and dynamic contact angle measurements of water and hexadecane in air and captive bubble measurements in water. Various types of high-density polymer brushes with nonionic and ionic functional groups were prepared on a silicon wafer by surface-initiated atom-transfer radical polymerization. The surface free energies of the brushes were estimated by Owens-Wendt equation using the contact angles of various probe liquids with different polarities. The decrease in the water contact angle corresponded to the polarity of fluoroalkyl, hydroxy, ethylene oxide, amino, carboxylic acid, ammonium salt, sulfonate, carboxybetaine, sulfobetaine, and phosphobetaine functional groups. The poly(2-perfluorooctylethyl acrylate) brush had a low surface free energy of approximately 8.7 mN/m, but the polyelectrolyte brushes revealed much higher surface free energies of 70-74 mN/m, close to the value for water. Polyelectrolyte brushes repelled both air bubbles and hexadecane in water. Even when the silicone oil was spread on the polyelectrolyte brush surfaces in air, once they were immersed in water, the oil quickly rolled up and detached from the brush surface. The oil detachment behavior observed on the superhydrophilic polyelectrolyte brush in water was explained by the low adhesion force between the brush and the oil, which could contribute to its excellent antifouling and self-cleaning properties.  相似文献   

11.
We report on the interaction of water molecules with polar and nonpolar stoichiometric surfaces of cubic silicon carbide, as described by ab initio molecular dynamics at finite temperature. Our calculations show that, irrespective of coverage, in the gas phase water spontaneously dissociates on both polar Si-terminated (001) and nonpolar (110) surfaces, following similar mechanisms. The specific geometric arrangement of atoms on the outermost surface layer is responsible for water orientation and coordination and thus plays a major role in determining surface reactivity. This is found to be the case also for water on a computer-generated amorphous-SiC surface. In addition, from a macroscopic standpoint, the ability of the two crystalline surfaces with different polarities to induce water dissociation can be related to the similarities of their ionization potentials.  相似文献   

12.
In recent decades, sustainable superhydrophobic surfaces from natural materials and sustainable processes have attracted increased interest due to their lower environmental footprint and potential applications in self-cleaning surfaces and biomedical devices. Although there is significant progress on selecting suitable nano and micro particles to prepare superhydrophobic surfaces, a comprehensive review on the direct use of sustainable colloidal particles (SCPs) is lacking. In this review, we highlight the recent advances on sustainable superhydrophobic surfaces using SCPs. The composition and properties, extraction methods, and chemical modifications are described, including cellulose nanocrystals, chitin/chitosan nanoparticles, and lignin nanoparticles. In addition to the physico–chemical properties and tunable dimensionality, the fabrication methodologies of superhydrophobic surfaces using modified colloids are described. Finally, the potential applications of these sustainable superhydrophobic surfaces ranging from oil/water separation, biomedical, water harvesting, biofabrication, microfluidic reactor, and food packaging are discussed together with a future perspective on the advances made.  相似文献   

13.
We report a density functional theory study of cation-induced bonding between carboxylated cellulose nanofibrils (CNFs). We describe a methodology of using cleaved cellulose crystal unit cells to develop simple surface and molecular models of charged CNFs. We compare bond lengths, binding energies, and displaced solvation volumes for interfibril models intercalated with alkali, alkaline earth, main group, or transition metal cations, surrounded by an implicit solvent. We characterize the type of bonding interactions that occur between metal cations, Mn+ and carboxylated CNF surfaces by calculating the electronic density of states and Mayer bond orders. We find that Mn+–O interactions for alkaline earth metal systems are predominantly electrostatic whereas transition metal cations form stronger, more covalent bonds with enhanced valence orbital overlap. Our results show that multivalent—as opposed to monovalent—ions can create CNF networks by effectively crosslinking multiple fibrils through surface carboxylate anions. Our computational results agree with empirical models of metal–carboxylate binding, while also providing a deeper understanding of the bonding mechanisms for different cations. Our findings help to explain trends in recent CNF hydrogelation experiments, and we also predict the existence of two new hydrogels—CNF-Mg2+ and CNF-Zr4+.  相似文献   

14.
Summary: Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10−1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils.  相似文献   

15.
This article demonstrates a new, modular approach to surface functionalization that harnesses chain entanglement. A layer of functionalized polyisobutylene, (PIB)‐ω, where ω = ‐OH, ‐thymine (T), ‐hexaethylene glycol (HEG), poly(ethylene glycol) (‐PEG‐OH), methoxy‐functionalized poly(ethylene glycol) (‐PEG‐OCH3), and ‐tetraethylene glycol‐α‐lipoate (TEG‐αL) was adhered to PIB‐based thermoplastic elastomer (TPE) surfaces. X‐ray photoelectron spectroscopy (XPS) at angles ranging from 20° to 75° showed decreasing polar group concentration with increasing penetration depth, confirming segregation of polar groups toward the surface. Water contact angle (WCA) of the PIB‐based TPE dropped from 95° to 79°?83° upon coating, and soaking in water for 24 h further decreased the WCA. Dynamic WCA measurements showed 40–30° receding angles, showing that stimulus from an aqueous environment elicits enrichment of polar groups on the surface. Fibrinogen (Fg) adsorption on the various surfaces was quantified using surface plasmon resonance (SPR). Static and dynamic WCA did not vary significantly among TPE + PIB‐ω surfaces, but there were dramatic differences in Fg adsorption: 256 ng/cm2 was measured on the native TPE, which dropped to 40 and 22 ng/cm2 on PIB‐PEG‐OCH3 and PIB‐PEG‐OH‐coated surfaces. PIB‐TEG‐αL‐coated surfaces presented the lowest Fg adsorption with 14 ng/cm2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1742–1749  相似文献   

16.
Polystyrene core nanosphere particles possessing 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymers on the corona were prepared by the free radical polymerization of hydrophilic polyMPC macromonomer and hydrophobic styrene with AIBN as a radical initiator in ethanol as a polar solvent. The morphology of the nanospheres was observed by transmission electron micrograph (TEM). The nanospheres were spherical in form and have a narrow size distribution. Their sizes could be controlled by varying the molecular weight of the macromonomer and the amount of it in feed. Electron spectroscopy for chemical analysis (ESCA) of the nanosphere surfaces suggested that polyMPC chains were located favorably on the surface of the nanosphere. The nanospheres having the polyMPC chains on their surfaces can be significant and useful materials in technological and medical fields. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3052–3058, 2000  相似文献   

17.
Inverse gas chromatography (IGC) was used to determine the dispersive component of the free energy as well as the acid-base properties of cellulose fibre surfaces, before and after modification by corona treatment. It was found that the corona treatment increases both the dispersive contribution to surface energy and its acidic character, whereas only a slight increase in its basicity was observed. It was also found that some chemical degradation of the surface occurs at high corona currents. The extent of modification of the surface properties, as revealed by IGC, was correlated to the surface chemical composition deduced from XPS analysis as well as with the electrical conductance and the pH of the water suspensions of the cellulose fibres.  相似文献   

18.
Poly(ethylene glycol) (PEG) can serve as an electron‐beam (e‐beam) resist to modulate protein adsorption on and cell adhesion to surfaces. PEG preferentially crosslinks under e‐beam irradiation to create microgels with controllable properties. Here, atomic‐force, scanning electron, and confocal microscopies are used to study discrete microgels formed from solvent‐cast PEG thin films by focused e‐beams with energies between 2 and 30 keV and point doses between 10 and 1000 fC. Consistent with experimental findings, Monte Carlo simulation of electron energy deposition identifies three structures within each microgel: a highly crosslinked core near the point of electron incidence; a lightly crosslinked near corona surrounding the core; and a far corona at the PEG–Si interface. The nature and relative sizes of these three regions and, hence, the microgel–protein interactions depend on the incident electron energy and dose. The far corona creates protein‐repulsive surface hundreds of nanometers or more from the microgel core. The highly crosslinked core is largely shielded by the near corona. These findings can help guide the choice of irradiation conditions to most effectively modulate protein–surface interactions via PEG microgels patterned by e‐beam lithography. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1543–1554  相似文献   

19.
石彦龙  冯晓娟  康恺  侯杨 《应用化学》2019,36(3):358-366
超疏水-超疏油材料在防污、防水、防油等领域有广泛的应用前景而引起人们极度关注。 本文用全氟辛酸溶液浸泡锌粉制得超疏水-超疏油锌粉,用聚乙烯醇胶将超疏水-超疏油锌粉粘合、固定到玻璃、木头、塑料、不锈钢、纸片、石头表面后可制得超疏水-超疏油表面,水滴、油滴在其表面的接触角均超过150°。 锌粉与全氟辛酸反应后生成Zn[CF3(CF2)6COO]2,氟代长链烷基的低表面能化学组成与微纳米粗糙结构的协调作用使其表现出超疏水、超疏油性能。 相关研究有望为超双疏材料的设计、制备及其在自清洁、防水防油及抗污等领域的应用提供借鉴。  相似文献   

20.
The process of micelle formation in an aqueous solution of the surfactant was simulated by the computer experiment. It was established by the molecular dynamics method that micelles are formed through the formation of premicellar associates of the surfactant. The practical absence of an attraction between single molecules of sodium pentadecyl sulfonate (SPDS) and premicellar associates dissolved in water was shown for a SPDS—water system. The function of the radial distribution of Na+ counterions towards polar groups of SPDS molecules in water and on the surfaces of micelles and premicellar associates was studied by the molecular dynamics method. The presence of dissociated and non-dissociated polar groups of the SPDS molecular on the micelle surface was found. The data obtained are consistent with the existence concepts on micelle formation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号