首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Demand for energy-efficient gas separations exists across many industrial processes, and membranes can aid in meeting this demand. Carbon molecular sieve (CMS) membranes show exceptional separation performance and scalable processing attributes attractive for important, similar-sized gas pairs. Herein, we outline a mathematical and physical framework to understand these attributes. This framework shares features with dual-mode transport theory for glassy polymers; however, physical connections to CMS model parameters differ from glassy polymer cases. We present evidence in CMS membranes for a large volume fraction of microporous domains characterized by Langmuir sorption in local equilibrium with a minority continuous phase described by Henry's law sorption. Using this framework, expressions are provided to relate measurable parameters for sorption and transport in CMS materials. We also outline a mechanism for formation of these environments and suggest future model refinements.  相似文献   

2.
3.
Metal–organic framework (MOF) glasses are promising candidates for membrane fabrication due to their significant porosity, the ease of processing, and most notably, the potential to eliminate the grain boundary that is unavoidable for polycrystalline MOF membranes. Herein, we developed a ZIF‐62 MOF glass membrane and exploited its intrinsic gas‐separation properties. The MOF glass membrane was fabricated by melt‐quenching treatment of an in situ solvothermally synthesized polycrystalline ZIF‐62 MOF membrane on a porous ceramic alumina support. The molten ZIF‐62 phase penetrated into the nanopores of the support and eliminated the formation of intercrystalline defects in the resultant glass membrane. The molecular sieving ability of the MOF membrane is remarkably enhanced via vitrification. The separation factors of the MOF glass membrane for H2/CH4, CO2/N2 and CO2/CH4 mixtures are 50.7, 34.5, and 36.6, respectively, far exceeding the Robeson upper bounds.  相似文献   

4.
The preparation and characterisation of adsorption-selective carbon membranes (ASCMs) is described. ASCMs can separate the components of a gas mixture depending on their adsorption strength. These membranes allow the separation of non-adsorbable or weakly adsorbable components (e.g. N2, H2, O2, etc) from the more strongly adsorbable components (e.g. hydrocarbons) in a gas mixture. They are prepared from the deposition of a thin film of a phenolic resin on the inner face of an alumina tube. Air oxidative treatment at temperatures in the range of 300–400°C, prior to carbonisation (pre-oxidation) or after carbonisation (under vacuum at 700°C) (post-oxidation) gives rise to an adsorption-selective carbon membrane. This membrane shows a high permeability and selectivity towards the separation of gas mixtures formed by hydrocarbons and N2. Taking into account the permeation and separation properties of the membranes, post-oxidation treatment is shown to be more effective than pre-oxidation. The separation characteristics of the carbon membranes are dependent on the composition of the gas mixture (i.e. proportion of more strongly adsorbable components) and temperature.  相似文献   

5.
Summary: In this work, we report superior mass transport properties of polymers prepared by the covalent coupling of supermolecular carbon cages (e.g., fullerenes, bucky balls) to a poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) polymer. Dispersing the bucky balls into the polymer reduces gas permeability, whereas covalent bonding enhances permeability up to 80% in comparison to the pure PPO. Gas pair selectivity, however, is not compromised and stays constant.

Schematic representation of the PPO polymer membrane and the PPO‐covalently bonded C60 polymer membrane.  相似文献   


6.
Carbon molecular sieves (CMS) were prepared from Greek lignite by a thermal treatment technique involving three sequential stages: carbonization, followed by activation with an oxidizing agent, and aperture modification by coke deposition. Adsorption of N2 at 77 K and CO2 at 298 K was used for the characterization of products. Molecular sieving properties were examined by measuring the adsorption kinetic curves of CO2 and CH4 at room temperature. Activated samples with the highest surface area were selected for CMS production by employing a propylene cracking technique. High temperatures resulted in the production of materials with large differences in their BET and CO2 surface areas. CO2-CH4 selectivity ratios estimated from the adsorption kinetic curves were high for these samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
New rigid polyimides with bulky CF3 groups were synthesized and engineered into high‐performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF3 side groups prohibited fiber transition layer collapse during cross‐linking, thereby greatly improving CO2/CH4 separation performance compared to conventional materials for aggressive natural gas feeds.  相似文献   

8.
自具微孔材料(PIMs)由于自身刚性分子链的扭曲折叠等会产生高比表面积的微孔结构,相应的膜材料具有优异的气体分离性能。将刚性扭曲的结构单元引入到聚酰亚胺(PI)主链中就得到自具微孔PI。微孔型PI是近年来发展的一种新型PI,其微孔结构使得PI膜的气体分离性能得到很大提升,其中气体渗透系数的提升尤为显著,且保持了传统PI良好的热稳定性、化学稳定性及高力学强度等性质。本文重点介绍了微孔PI以及基于微孔PI复合膜的最新研究进展,并对其未来发展趋势进行了展望。  相似文献   

9.
张蒙茜  冯霄 《化学学报》2022,80(2):168-179
降低工业分离过程的能耗为缓解全球能源紧缺问题提供了有效途径. 相比传统工业分离技术, 膜分离技术能耗低、经济效益高, 开发高效的膜材料是提升膜分离性能的重要手段. 共轭微孔聚合物(CMP)膜具有刚性永久超微孔道、高孔隙率、孔结构及化学环境可调控、交联骨架稳定性好等优势, 在分离领域具有良好的应用前景. 概述了近年来CMP膜的制备方法并简要对比了其优缺点, 阐述了CMP膜在气体分离、有机溶剂纳滤、离子筛分和手性分离等领域的分离机理和研究进展, 为开发新型具有良好分离性能的CMP膜材料提供研究思路.  相似文献   

10.
Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon   总被引:1,自引:0,他引:1  
A pressure-swing adsorption (PSA) simulation study was performed for the separation of a mixture of 95% O2 and 5% Ar using a molecular sieve carbon (MSC) as the adsorbent. Two PSA cycles have been outlined to maximize the recovery of either argon or oxygen as a high purity product. The effect of cycle parameters such as cocurrent depressurization pressure, purge/feed ratio, pressure ratio and adsorption pressure on the separation of O2/Ar has been studied. It was found that it is feasible to obtain an argon product of purity in excess of 80% with reasonably high recovery using one of the cycles. The other cycle is capable of producing high purity oxygen (>99%) at high recovery (>50%) with reasonably high product throughputs. The PSA process can be conducted at room temperature and hence has an advantage over conventional processes like cryogenic distillation and cryogenic adsorption.  相似文献   

11.
Carbon membranes have great potential for highly selective and cost‐efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp2 hybridized carbon sheets as well as sp3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m3(STP)/(m2hbar). Furthermore, by a post‐synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide.  相似文献   

12.
13.
由聚合物结构预测气体的透过性能   总被引:1,自引:0,他引:1  
本文利用基团加和法,对20多种常见聚合物的自由体积和内聚能进行了计算。发现氧气和氮气在聚合物膜中的透过率与自由体积和内聚能的比值有直接关系。此比值越大,气体的透过率越大,透过率的对数与自由体积和内聚能的比值基本呈线性关系。据此,对未知聚合物可根据其化学结构,从已有的基团数据计算该比值,从而预测它对氧气和氮气的透过性能。  相似文献   

14.
Two‐dimensional nanosheets have shown great potential for separation applications because of their exceptional molecular transport properties. Nanosheet materials such as graphene oxides, metal–organic frameworks, and covalent organic frameworks display unique, precise, and fast molecular transport through nanopores and/or nanochannels. However, the dimensional instability of nanosheets in harsh environments diminishes the membrane performance and hinders their long‐term operation in various applications such as gas separation, water desalination, and ion separation. Recent progress in nanosheet membranes has included modification by crosslinking and functionalization that has improved the stability of the membranes, their separation functionality, and the scalability of membrane formation while the membranes’ excellent molecular transport properties are retained. These improvements have enhanced the potential of nanosheet membranes in practical applications such as separation processes.  相似文献   

15.
Highly permeable montmorillonite layers bonded and aligned with the chain stretching orientation of polyvinylamineacid are immobilized onto a porous polysulfone substrate to fabricate aligned montmorillonite/polysulfone mixed‐matrix membranes for CO2 separation. High‐speed gas‐transport channels are formed by the aligned interlayer gaps of the modified montmorillonite, through which CO2 transport primarily occurs. High CO2 permeance of about 800 GPU is achieved combined with a high mixed‐gas selectivity for CO2 that is stable over a period of 600 h and independent of the water content in the feed.  相似文献   

16.
Two-dimensional (2D) metal-organic frameworks (MOF) nanosheets have emerged as novel membrane materials for gas separation. However, the development of ultrathin MOF membranes with tunable separation performances is still a challenge. Herein, we developed a facile GO-assisted restacking method to fabricate defect-free membranes with monolayer Zr-BTB nanosheets. Obtained ultrathin membranes ranging from 130 nm to 320 nm show tunable separation performances and exceed the 2008 Robeson upper bound by changing the amount of nanolayers in vertical stacking direction. Furthermore, a heating filtration method was used to change the restacking process of nanosheets in the horizontal direction. As a result, H2/CO2 selectivity can be enhanced by two times with the same membrane thickness (130 nm) and H2 permeance is almost maintained to be 7.0×10−7 mol m−2 s−1 pa−1. This method may provide a possible way to efficiently tune the gas separation performances of MOF membranes.  相似文献   

17.
Defect‐free mixed‐matrix membranes (MMMs) were prepared by incorporating hydrophilic metal‐organic polyhedra (MOPs) into cross‐linked polyethylene oxide (XLPEO) for efficient CO2 separation. Hydrophilic MOPs with triethylene glycol pendant groups, which were assembled by 5‐tri(ethylene glycol) monomethyl ether isophthalic acid and CuII ions, were uniformly dispersed in XLPEO without particle agglomeration. Compared to conventional neat XLPEO, the homogenous dispersion of EG3‐MOPs in XLPEO enhanced CO2 permeability of MMMs. Upon increasing the amount of EG3‐MOPs, the membrane performance such as CO2/N2 selectivity was steadily improved because of unsaturated CuII sites at paddle‐wheel units, which was confirmed by Cu K‐edge XANES and TPD analysis. Therefore, such defect‐free MMMs with unsaturated metal sites would contribute to enhance CO2 separation performance.  相似文献   

18.
Summary: Carbon molecular‐sieve membranes (CMSMs) have shown great potential for gas separation. They exhibit high selectivity by permitting effective size‐ and shape‐separation between gas molecules of similar molecular dimensions. Hence, the control of their pore size is very important. While previous studies have focused on the conditions of pyrolysis and its effect on CMSM properties, a novel approach is reported here whereby the precursor polymer is chemically modified prior to pyrolysis and the resultant CMSM was investigated for its gas separation properties. Pyrolysis of chemically crosslinked and uncrosslinked Matrimid® resulted in a change in d‐spacing from 5.6 to 3.6 and 3.7 Å, respectively. The crosslinked CMSM also exhibited greater ordering in its packing. The Matrimid‐derived CMSMs exhibited excellent separation properties for CO2/CH4.

Mechanism of chemical crosslinking modification.  相似文献   


19.
自具微孔高分子(polymers of intrinsic microporosity, PIMs)是近年来出现的一种新型有机微孔材料,由含有扭曲结构的刚性单体聚合而成,具有比表面积高、化学和物理性质稳定、微孔结构可控等优点,在均相催化、氢气储存等方面表现出巨大的应用潜力。因其优越的气体分离性能,PIMs气体分离膜更是吸引了众多研究者的关注,发展迅速。本文总结了PIMs的分类及其在气体分离膜中的应用,重点介绍了PIMs气体分离膜的结构调控与改性方面的研究进展,分析了PIMs的分子结构与气体分离性能间的内在关联,最后提出了目前研究中存在的一些问题并对其发展做出了简要的评述。  相似文献   

20.
Since the discovery of graphene and its derivatives, the development and application of two‐dimensional (2D) materials have attracted enormous attention. 2D microporous materials, such as metal‐organic frameworks (MOFs), covalent organic frameworks (COFs), graphitic carbon nitride (g‐C3N4) and so on, hold great potential to be used in gas separation membranes because of their high aspect ratio and homogeneously distributed nanometer pores, which are beneficial for improving gas permeability and selectivity. This review briefly summarizes the recent design and fabrication of 2D microporous materials, as well as their applications in mixed matrix membranes (MMMs) for gas separation. The enhanced separation performances of the membranes and their long‐term stability are also introduced. Challenges and the latest development of newly synthesized 2D microporous materials are finally discussed to foresee the potential opportunities for 2D microporous material‐based MMMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号