共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we analyse a posteriori error estimates of mixed finite element discretizations for linear parabolic equations. The space discretization is done using the order λ?≥?1 Raviart–Thomas mixed finite elements, whereas the time discretization is based on discontinuous Galerkin (DG) methods ( r?≥?1). Using the duality argument, we derive a posteriori l ∞( L 2) error estimates for the scalar function, assuming that only the underlying mesh is static. 相似文献
2.
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control. 相似文献
4.
The objective of this paper is to introduce a general scheme for deriving a posteriori error estimates by using duality theory of the calculus of variations. We consider variational problems of the form where is a convex lower semicontinuous functional, is a uniformly convex functional, and are reflexive Banach spaces, and is a bounded linear operator. We show that the main classes of a posteriori error estimates known in the literature follow from the duality error estimate obtained and, thus, can be justified via the duality theory. 相似文献
5.
We derive residual‐based a posteriori error estimates of finite element method for linear parabolic interface problems in a two‐dimensional convex polygonal domain. Both spatially discrete and fully discrete approximations are analyzed. While the space discretization uses finite element spaces that are allowed to change in time, the time discretization is based on the backward Euler approximation. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates and an appropriate adaptation of the elliptic reconstruction technique introduced by (Makridakis and Nochetto, SIAM J Numer Anal 4 (2003), 1585–1594). We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the ‐norm and almost optimal order in the ‐norm. The interfaces are assumed to be of arbitrary shape but are smooth for our purpose. Numerical results are presented to validate our derived estimators. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 570–598, 2017 相似文献
6.
In this article, residual‐type a posteriori error estimates are studied for finite volume element (FVE) method of parabolic equations. Residual‐type a posteriori error estimator is constructed and the reliable and efficient bounds for the error estimator are established. Residual‐type a posteriori error estimator can be used to assess the accuracy of the FVE solutions in practical applications. Some numerical examples are provided to confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 259–275, 2017 相似文献
7.
This paper considers a posteriori error estimates by averaged gradients in second order parabolic problems. Fully discrete
schemes are treated. The theory from the elliptic case as to when such estimates are asymptotically exact, on an element,
is carried over to the error on an element at a given time. The basic principle is that the elliptic theory can be extended
to the parabolic problems provided the time-step error is smaller than the space-discretization error. Numerical illustrations
confirming the theoretical results are given. Our results are not practical in the sense that various constants can not be
estimated realistically. They are conceptual in nature.
AMS subject classification (2000) 65M60, 65M20, 65M15 相似文献
9.
In this article, a semidiscrete finite element method for parabolic optimal control problems is investigate. By using elliptic reconstruction, a posteriori error estimates for finite element discretizations of optimal control problem governed by parabolic equations with integral constraints are derived. 相似文献
10.
We are interested in the discretization of parabolic equations, either linear or semilinear, by an implicit Euler scheme with respect to the time variable and finite elements with respect to the space variables. The main result of this paper consists of building error indicators with respect to both time and space approximations and proving their equivalence with the error, in order to work with adaptive time steps and finite element meshes. RÉSUMÉ. Nous considérons la discrétisation d'équations paraboliques, soit linéaires soit semi-linéaires, par un schéma d'Euler implicite en temps et par éléments finis en espace. L'idée de cet article est de construire des indicateurs d'erreur liés à l'approximation en temps et en espace et de prouver leur équivalence avec l'erreur, dans le but de travailler avec des pas de temps adaptatifs et des maillages d'éléments finis adaptés à la solution. 相似文献
11.
本文研究对称椭圆特征值问题的有限元后验误差估计,包括协调元和非协调元,具有下列特色:(1)对协调/非协调元建立了有限元特征函数uh的误差与相应的边值问题有限元解的误差在局部能量模意义下的恒等关系式,该边值问题的右端为有限元特征值λh与uh的乘积,有限元解恰好为uh.从而边值问题有限元解在能量模意义下的局部后验误差指示子,包括残差型和重构型后验误差指示子,成为有限元特征函数在能量模意义下的局部后验误差指示子.(2)讨论了协调有限元特征函数的基于插值后处理的梯度重构型后验误差估计,对有限元特征函数的导数得到了最大模意义下的渐近准确局部后验误差指示子. 相似文献
12.
An implicit a posteriori error estimation technique is presented and analyzed for the numerical solution of the time-harmonic Maxwell equations using Nédélec edge elements. For this purpose we define a weak formulation for the error on each element and provide an efficient and accurate numerical solution technique to solve the error equations locally. We investigate the well-posedness of the error equations and also consider the related eigenvalue problem for cubic elements. Numerical results for both smooth and non-smooth problems, including a problem with reentrant corners, show that an accurate prediction is obtained for the local error, and in particular the error distribution, which provides essential information to control an adaptation process. The error estimation technique is also compared with existing methods and provides significantly sharper estimates for a number of reported test cases. 相似文献
13.
Using the abstract framework of [ 9] we analyze a residual a posteriori error estimator for space-time finite element discretizations of quasilinear parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called -scheme, which includes the implicit and explicit Euler methods and the Crank-Nicholson scheme. 相似文献
14.
We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension. 相似文献
15.
The purpose of this article is to derive a posteriori error estimates for the H 1-Galerkin mixed finite element method for parabolic problems. We study both semidiscrete and fully discrete a posteriori error analyses using standard energy argument. A fully discrete a posteriori error analysis based on the backward Euler method is analysed and upper bounds for the errors are derived. The estimators yield upper bounds for the errors which are global in space and time. Our analysis is based on residual approach and the estimators are free from edge residuals. 相似文献
16.
In this article, we construct an a posteriori error estimator for expanded mixed hybrid finite‐element methods for second‐order elliptic problems. An a posteriori error analysis yields reliable and efficient estimate based on residuals. Several numerical examples are presented to show the effectivity of our error indicators. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 330–349, 2007 相似文献
17.
We derive new a posteriori error estimates for the finite element solution of an elliptic eigenvalue problem, which take into account also the effects of the polygonal approximation of the domain. This suggests local error indicators that can be used to drive a procedure handling the mesh refinement together with the approximation of the domain. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 369–388, 2012 相似文献
18.
An a posteriori error estimator is presented for a subspace implementation of preconditioned inverse iteration, which derives from the well‐known inverse iteration in such a way that the associated system of linear equations is solved approximately by using a preconditioner. The error estimator is integrated in an adaptive multigrid algorithm to compute approximations of a modest number of the smallest eigenvalues together with the eigenfunctions of an elliptic differential operator. Error estimation is applied both within the actual finite element space (in order to estimate the iteration error) as well as in its hierarchical refinement of higher‐order elements (to estimate the discretization error) which gives rise to a balanced reduction of the iteration error and of the discretization error in the adaptive multigrid algorithm. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
19.
In this work, the residual‐type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H1 norm and pressure in L2 norm are derived. Furthermore, a global upper bound of u ? uh in L2‐norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
|