首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A substantial number of studies have been conducted over the last several decades to assess the potential impacts of long-term increases in ultraviolet-B radiation (UV-B between 280 and 320 nm) that will result from continued depletion of stratospheric ozone. However, seasonal changes, tropospheric chemistry and cloudiness are the dominant factors controlling ambient UV-B levels on a short-term or daily basis. The effects of short-term changes in UV-B on plant growth, phytochemistry and physiological processes have received relatively little attention. The USDA UV-B Monitoring and Research Program provides an excellent network of stations that provide an opportunity to monitor long-term changes in solar UV-B radiation and evaluate the responses of plants to short-term variation in UV-B levels on a near-real-time basis. In this study barley (Hordeum vulgare L.) and soybean (Glycine max [L] Merr.) were used as model systems. Emerging seedlings of these species were grown under either near-ambient levels of UV-B or under reduced levels (ca 90% reduction) in the field. Periodic measurements of foliar UV-screening compounds were made on separate groups of seedlings planted at intervals over the growing season during contrasting periods of ambient levels of UV radiation. The levels of UV-screening compounds correlated with UV-B levels in both species and with UV-A in soybean but the sensitivity of the response differed between the two species and among the soybean cultivars. Response differences among species may be related to unique secondary chemistry of each species, so one response estimate or action spectrum may not be appropriate for all species.  相似文献   

2.
The effects of natural UV-B radiation on growth, photosynthetic and photoprotective pigment composition of different Salicornia species were analyzed in salt marshes at three different sites along the Americas (Puerto Rico, southern Brazil and Patagonia, Argentina). Plants were exposed to different levels of UV-B radiation for 1-2 years in situ as well as in outdoor garden UV-B exclusion experiments. Different UV-B levels were obtained by covering plants with UV-B opaque (blocked 93-100% of ambient UV-B) and UV-B attenuating (near-ambient) filters (reduced 20-25% of UV-B). Unfiltered plants were exposed to natural irradiance. UV-B filters had significant effects on temperature and photosynthetic pigments (due to changes in PAR; 400-700 nm). The growth of Salicornia species was inhibited after 35 to 88 days of exposure to mean UV-B radiation dosages between 3.6 and 4.1 kJ m(-2) day(-1). The highest number of branches on the main shoot (S. bigelovii and S. gaudichaudiana) and longest total length of the branches (S. gaudichaudiana) were observed in the UV-B opaque treatment. Salicornia species responded to increasing levels of UV-B radiation by increasing the amount of UV-B absorbing pigments up to 330%. Chromatographic analyses of seedlings and adult S. bigelovii plants found seven different UV-B absorbing flavonoids that are likely to serve as UV-B filtering pigments. No evidence of differential sensitivity or resilience to UV-B radiation was found between Salicornia species from low-mid latitudes and a previously published study of a high-latitude population.  相似文献   

3.
We examined the influence of short-term exposures of different UV wavebands on the elongation and phototropic curvature of hypocotyls of cucumbers (Cucumis sativus L.) grown in white light (WL) and dim red light (DRL). We evaluated (1) whether different wavebands within the ultraviolet B (UV-B) region elicit different responses; (2) the hypocotyl elongation response elicited by ultraviolet C (UV-C); (3) whether irradiation with blue light-enriched white light (B/WL) given simultaneous with UV-B treatments reversed the effect of UV in a manner indicative of photoreactivation; and (4) whether responses in WL-grown plants were similar to those grown in DRL. Responses to brief (1-100 min) irradiations with three different UV wavebands all induced inhibition of elongation measured after 24 h. When WL-grown seedlings were irradiated with light containing proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm), inhibition of hypocotyl elongation was induced at a threshold of 0.5 kJ m(-2), whereas exposure to UV-B including only wavelengths longer than 290 nm (and only 8% of UV-B between 290 and 300 nm) induced inhibition of hypocotyl elongation at a threshold of 1.6 kJ m(-2). The UV-C treatment induced reduction in elongation at a threshold of <0.01 kJ m(-2) for DRL-grown plants and <0.03 kJ m(-2) for WL-grown plants. B/WL caused 50% reversal of the short-wavelength UV-B-induced inhibition of elongation in DRL-grown seedlings but did not reverse the effect of long-wavelength UV-B. B/WL caused 30% reversal of the UV-C-induced inhibition of elongation in WL-grown seedlings but did not affect the response to short-wavelength UV-B. Short-wavelength UV-B also induced positive phototropic curvature in both types of seedlings, and this was reversed 60% or completely in DRL-grown and WL-grown seedlings, respectively. The similarity of responses between the etiolated (DRL-grown) and de-etiolated (WL-grown) seedlings indicates that the short-wavelength specific response may be relevant to natural light environments, and the apparent photoreactivation implicates DNA damage as the sensory mechanism for the response.  相似文献   

4.
The Antarctic ozone hole and a general depletion of the stratospheric ozone layer cause increased levels of ultraviolet-B solar radiation (UV-B) over Tierra del Fuego, the southernmost tip of South America. For three consecutive growing seasons (1997–2000), we studied the biological impacts (morphology, physiology, demography and phenology) of natural UV-B radiation on a perennial Salicornia ambigua Michx. community in San Sebastian Bay (53° S and 68° W), Tierra del Fuego, Argentina. This is the first UV-B screening experiment on a subantarctic halophytic community. The shortwave UV-B spectrum (280 to 320 nm) was excluded by covering plots with UV-B blocking film (Mylar). These plots were compared to controls covered with UV-B transparent (Aclar) plastic screens, and unscreened plots. Shoot length in Salicornia was not affected by UV-B. Exposure to natural UV-B reduced biomass and density (by 17% and 38%, respectively). Concentration of UV-shielding pigments and cuticle thickness were both significantly higher (25–48% and 21–40%, respectively) in plants receiving ambient UV-B. The increase in cuticle thickness persisted throughout the growing season, whereas pigment concentration was higher at the beginning of the growing season. Also, the number of dead shoots was higher in plants exposed to UV-B. At the end of the growing season (March) shoot mortality was higher in plants exposed to ambient UV-B, and post-flowering senescence was 30 days earlier. Slight changes in the relative composition of Salicornia to Puccinellia were seen. The reduction observed in Salicornia shoot density under ambient UV-B was cumulative over time; 23% in the first growing-season, rising to 38% by the third growing-season. A similar incremental increase in pigment absorption at 305 nm was seen; 25% in the first and 48% in the third growing season.  相似文献   

5.
The responses of two amphibious species, Batrachium trichophyllum and Potamogeton alpinus to different UV-B environments were studied. Plant material from natural environments, as well as from outdoor treatments was examined. In long-term outdoor experiments plants were grown under three different levels of UV-B radiation: reduced and ambient UV-B levels, and a UV-B level simulating 17% ozone depletion. The following parameters were monitored: contents of total methanol soluble UV-absorbing compounds and chlorophyll a, terminal electron transport system (ETS) activity and optimal and effective quantum yield of photosystem II. No effect of the different UV-B levels on the measured parameters was observed. The amount of UV-B absorbing compounds seems to be saturated, since no differences were observed between treatments and no increase was found in peak season, when natural UV-B levels were the highest. Physiological measurements revealed no harmful effects; neither on potential and actual photochemical efficiency, nor on terminal ETS activity. The contents of UV-B absorbing compounds were examined also in plant material sampled in low and high altitude environments during the growth season. Both species exhibited no seasonal dynamics of production of UV-absorbing compounds. The contents were variable and showed no significant differences between high and low altitude populations.  相似文献   

6.
An investigation was carried out to find whether enhanced levels of UV-B radiation induce increased concentrations of flavonoids in the leaves of the grass species Deschampsia antarctica, Deschampsia borealis and Calamagrostis epigeios and the sedge Carex arenaria. Whether the enhanced levels of UV-B influenced the proportions of the various flavonoids in the leaves was also studied. Increased flavonoid concentrations would improve the UV-B shielding of UV-B susceptible tissues. Using HPLC analysis the flavonoids orientin and luteolin were identified in D. antarctica, orientin in D. borealis and tricin in C. arenaria. Neither flavonoid concentrations nor the proportion of the various flavonoids in climate room grown D. antarctica and D. borealis plants differed between individuals grown under 0, ambient or elevated UV-B levels. After 12 weeks of growth biomass production and shoot-to-root ratios of D. antarctica were not affected by elevated UV-B radiation. Greenhouse grown C. epigeios plants contained higher concentrations and different proportions of flavonoids grown under elevated levels of UV-B than when grown under ambient or 0 UV-B. In C. epigeios plants grown in their natural habitat in the field under ambient or elevated levels of UV-B, flavonoid concentrations and proportions were the same in plants from both treatments. In the leaves of the sedge C. arenaria grown in a greenhouse flavonoid concentrations and proportions were not affected by UV-B radiation. Leaves were harvested four times during the growing season from C. arenaria plants grown in their natural habitat in the field under ambient or elevated levels of UV-B. Leaves harvested in January contained higher concentrations of flavonoids when grown under elevated UV-B than when grown under ambient UV-B radiation. In leaves harvested in May, September and December flavonoid concentrations were the same in plants grown under ambient or elevated UV-B. The proportion of the different flavonoids was the same for both treatments in all months. These results indicate that constitutive levels of flavonoids in these grass and sedge species are adequately high to protect them against ambient and elevated levels of solar UV-B radiation.  相似文献   

7.
We examined the influence of solar ultraviolet-B radiation (UV-B; 280-315 nm) on the performance of Antarctic vascular plants (Colobanthus quitensis and Deschampsia antarctica) by placing filters that either absorbed or transmitted most solar UV-B over tundra along the Antarctic Peninsula for four consecutive growing seasons. The difference in biologically effective UV-B levels between our treatments was 65%, which was similar to the enhancement in ambient UV-B levels that appeared attributable to ozone depletion during the first 2 months of the growing season (November and December) at our site (62%). In both species, exposure to UV-B reduced vegetative growth, primarily through slower leaf elongation rates that led to shorter fully expanded leaves. In C. quitensis, exposure to UV-B also led to reductions in leaf longevity, branch production, cushion diameter growth, aboveground biomass, and thickness of the non-green cushion base and litter layer. Exposure to UV-B accelerated the development of reproductive structures and increased the number of panicles (D. antarctica) and capsules (C. quitensis) that reached maturity per unit of ground surface area covered by mother plants. However, this effect was offset by a tendency for these panicles and capsules to produce fewer spikelets and seeds. Ultimately, UV-B exposure did not effect the numbers of spikelets or seeds produced per unit of ground surface area. While seeds from plants exposed to UV-B tended to be lighter, germination rates were similar between UV-B treatments. The relative reductions in leaf elongation rates in D. antarctica attributable to UV-B exposure increased from the first (23%) through the fourth (43%) growing season, and relative reductions in leaf longevity in C. quitensis tended to increase from the first (9%) through the fourth (19%) growing season, suggesting that UV-B growth responses tended to be cumulative over successive years.  相似文献   

8.
The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 x 10(3) kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.  相似文献   

9.
Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.  相似文献   

10.
Abstract— The increase in UV-B radiation(290–320 nm) penetrating to the earth's surface as a result of the chemical depletion of the stratospheric ozone layer is an important environmental concern. In most studies using artificial UV-B sources, the determination of enhanced UV-B radiation effects on plants relies on equivalent UV-A radiation(320–400 nm) from the experimental UV-B fluorescent lamp source, filtered with either cellulose diacetate (CA) to create UV-B treatments, or with type S Mylar or polyester (PE) to create controls (no UV-B). The spectral irradiance in the UV-A was measured in the dark below lamps at two daily UV-B irradiance levels (14.1 and 10.7 W m-2) with CA and PE at two ages. Highly significant differences in UV-A radiation (P 0.01) were measured below the treatment/control pairs at both fluence rates and filter ages. Filter aging was observed, which reduced the UV-A irradiance, especially for PE. The total daily ambient UV-A irradiance was also determined in the glasshouse at three seasons: the fall equinox, summer and winter, from which the total daily UV-A (lamp + ambient) irradiances were calculated. The addition of low to moderate ambient irradiance removed the treatment/control differences in the longwave UV-A(350–400 nm); however, the treatment/contro1 differences remained in the shortwave UV-A(320–350 nm), which was restricted by the glass, and in the total UV-A. The treatment/control differences persisted in the shortwave UV-A for the higher irradiance level, even under high summer ambient light. Also, spectral ratios (UVB:UV-A and shortwave: longwave UV-A) for all treatment groups decreased as the ambient UV-A radiation increased. Therefore, a range of experimental conditions exist where PE-covered lamps do not provide adequate control for UV-A irradiance, relative to the CA treatment, for glasshouse/growth chamber experiments. Potential complications in the interpretation of plant response exist for UV-B experiments conducted under low ambient light conditions (e.g. growth chambers; glasshouse in winter) or high daily UV-B irradiances (e.g. 14 kJ m-2) for those plant responses that are sensitive to UV-A radiation.  相似文献   

11.
The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.  相似文献   

12.
The seeds of winter wheat were pretreated with three different doses of low-energy N+ beams, and its seedlings were subjected to UV-B irradiation (10.08?kJ?m?2?day?1) at three-leaves stage. The growth characteristic of seeds, the oxidative damage to membrane system induced by UV-B radiation, and the alleviating effects of N+ beams pretreatment to radiation damage were investigated. The results showed that the germination rate and seedling rate, respectively, increased 14.09?±?1.03 and 13.91?±?1.21?% compared with control (CK) at the dose of 4.0?×?1016 ions/cm2. When seedlings were exposed to UV-B radiation, the pretreatment method under the dose of 4.0?×?1016 ions/cm2 made the activity of peroxidase and superoxide dismutase increasing, the content of chlorophyll enhancing, but the content of malondialdehyde reducing significantly compared with that of the single UV-B radiation. Whereas, the activity of catalase irradiated by UV-B improved notably under the pretreatment dose of 8.0?×?1016 ions/cm2. In addition, after being irradiated with UV-B, the content of soluble protein and glutathione whose seeds were pretreated by the dose of 6.0?×?1016 ions/cm2 were higher than that of the single UV-B radiation. It was suggested that the suitable dose of low-energy ion beams pretreatment to wheat seeds could change its physiological characteristics at seedlings stage to alleviate the damage effects from UV-B radiation.  相似文献   

13.
Recent reports concerning the lethal effects of solar ultraviolet-B (UV-B) (290-320 nm) radiation on amphibians suggest that this stressor has the potential to impact some amphibian populations. In this study embryos and larvae of three anuran species, Rana pipiens, Rana clamitans and Rana septentrionalis, were exposed to full-spectrum solar radiation and solar radiation filtered to attenuate UV-B radiation or UV-B and ultraviolet-A (UV-A) (290-380 nm) radiation to determine the effects of each wavelength range on embryo and larval survival. Ambient levels of solar radiation were found to be lethal to all three species under exposure conditions that eliminated shade and refuge. Lethality was ameliorated by filtration of UV-B radiation alone, demonstrating that ambient UV-B radiation is sufficient to cause mortality. Although several studies have qualitatively demonstrated the lethality of UV-B to early life stage amphibians this study demonstrates that the larval life stages of the three species tested are more sensitive than the embryonic stages. This suggests that previous reports that have not included the larval life stage may underestimate the risk posed to some anuran populations by increasing UV-B exposure. Furthermore, this study reports quantitative UV-B dosimetry data, collected in conjunction with the exposures, which can be used to begin the assessment of the impact of environmental changes which increase UV-B exposure of these anurans.  相似文献   

14.
The effect of enhanced UV-B radiation on buckwheat (Fagopyrum esculentum Moench. variety 'Darja'), an important high elevation crop, was studied in order to estimate its vulnerability in changing UV-B environment. Plants were grown in outdoor experiments from July to October under reduced and ambient UV-B levels, and an UV-B level simulating 17% ozone depletion in Ljubljana. During the development the following parameters were monitored: light saturated photosynthetic activity, transpiration, potential and effective photochemical efficiencies of photosystem II, the contents of photosynthetic pigments and methanol soluble UV-B absorbing compounds. At the end of the experiment, growth rate and production of seeds were estimated. In the following growth season the seeds collected from plants exposed to different UV-B treatments were tested for germination capacity. Total UV-B absorbing compounds during plant development were increased by UV-B radiation, photosynthetic pigments (chlorophyll a and b and carotenoids) decreased. Photosynthetic rate was lowered in an early stage of development. UV-B treatment resulted in the increase in the transpiration rate and consequently the decrease in water use efficiency (WUE). The disturbances in water economy and in photosynthesis affected the reproduction potential negatively; the production of seeds in plants cultivated under ambient and enhanced UV-B was 57 and 39% of the production of specimens treated with reduced UV-B, respectively. The germination of seeds collected from treated plants revealed on average about 95% success, independently of the treatment, but the time needed for germination was the shortest for seeds developed under enhanced UV-B level treatment. Enhanced UV-B radiation affected water relations and production of buckwheat, but not the potential of seeds for germination.  相似文献   

15.
Current conditions of 2-11 kJ m(-2) day(-1) of UV-B radiation and temperatures of >30 degrees C during flowering in cotton cultivated regions are projected to increase in the future. A controlled environment study was conducted in sunlit growth chambers to determine the effects of UV-B radiation and temperature on physiology, growth, development and leaf hyperspectral reflectance of cotton. Plants were grown in the growth chambers at three day/night temperatures (24/16 degrees C, 30/22 degrees C and 36/28 degrees C) and three levels of UV-B radiation (0, 7 and 14 kJ m(-2) day(-1)) at each temperature from emergence to 79 days under optimum nutrient and water conditions. Increases in main stem node number and the node of first fruiting branch and decrease in duration to first flower bud (square) and flower were recorded with increase in temperature. Main effects of temperature and UV-B radiation were significant for net photosynthetic rates, stomatal conductance, total chlorophyll and carotenoid concentrations of uppermost, fully expanded leaves during squaring and flowering. A significant interaction between temperature and UV-B radiation was detected for total biomass and its components. The UV-B radiation of 7 kJ m(-2) day(-1) reduced boll yield by 68% and 97% at 30/22 degrees C and 36/28 degrees C, respectively, compared with yield at 0 kJ m(-2) day(-1) and 30/22 degrees C. No bolls were produced in the three temperature treatments under 14 kJ m(-2) day(-1) UV-B radiation. The first-order interactions between temperature, UV-B radiation and leaf age were significant for leaf reflectance. This study suggests a growth- and process-related temperature dependence of sensitivity to UV-B radiation.  相似文献   

16.
Solid-phase extraction (SPE) procedures were developed to avoid interference during the quantitative determination of cyproconazole and tebuconazole co-existing in wood extractives. Five species of wood were used, Japanese cedar (Cryptomeria japonica), Japanese larch (Larix leptolepis), Yezo spruce (Picea jezoensis), Sakhalin fir (Abies sachalinensis), and western hemlock (Tsuga heterophylla). Methanol extractives from the heartwood of all wood samples, except western hemlock, interfered with the quantitative determination of cyproconazole and tebuconazole using liquid chromatography (LC) with UV detection (LC-UV). SPE with Oasis MCX was effective in avoiding this interference. This method also reduced the time and volume of mobile phase required for LC-UV, since wood extractives with long retention times were also removed.  相似文献   

17.
18.
The effects of UV-B radiation on photosynthesis, growth and cannabinoid production of two greenhouse-grown C. sativa chemotypes (drug and fiber) were assessed. Terminal meristems of vegetative and reproductive tissues were irradiated for 40 days at a daily dose of 0, 6.7 or 13.4 kJ m-2 biologically effective UV-B radiation. Infrared gas analysis was used to measure the physiological response of mature leaves, whereas gas-liquid chromatography was used to determine the concentration of cannabinoids in leaf and floral tissue.
There were no significant physiological or morphological differences among UV-B treatments in either drug- or fiber-type plants. The concentration of Δ9-tetrahydrocannabinol (Δ9-THC), but not of other cannabinoids, in both leaf and floral tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation.
The increased levels of Δ9-THC in leaves after irradiation may account for the physiological and morphological tolerance to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidiol (a cannabinoid with UV-B absorptive characteristics similar to Δ9 THC). Thus the contribution of cannabinoids as selective UV-B filters in C. sativa is equivocal.  相似文献   

19.
To determine the role of microwaves in the stress resistance of plants to enhanced ultraviolet-B (UV-B) radiation, Isatis indigotica Fort. seeds were subjected to microwave radiation for 8 s (wavelength 125 mm, power density 1.26 mW mm(-2), 2450 MHz). Afterwards they were cultivated in plastic pots in an artificial-glass greenhouse maintained at 25 degrees C, 70% relative humidity, and 400 micromol mol(-1) CO2, under visible-light conditions of 1500 micromol m(-2) s(-1) for 8 h day(-1). When the seedlings were 10 days old, they were subjected to 10.08 kJ m(-2) UV-B (PAR: 220 micromol m(-2) s(-1)) radiation for 8 days. Changes in a number of physiological and biochemical characteristics and in the thermal decomposition enthalpy of biomass were measured and used as indicators of the protective capacity of microwave radiation in this experiment. Our results revealed that microwave pretreatment of seeds enhanced UV-B stress resistance in the seedlings by decreasing the concentration of malondialdehyde (MDA) and increasing the concentration of ascorbic acid (AsA) and UV-B-absorbing compounds, increasing the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), and increasing the energy accumulation of photosynthesis. All these results suggest that microwave radiation enhances plant metabolism and results in increased UV-B stress resistance. This is the first investigation reporting the use of microwave pretreatment to protect the cells of Isatis indigotica from UV-B-induced lesions.  相似文献   

20.
Abstract— Soybeans [ Glycine max (L) Merr. cv Essex] were grown in field plots during May-October 1985 under ambient and an enhanced level of ultraviolet-B (UV-B) radiation (supplemental daily dose: 5.1 effective kJ m-2). They were either subjected to water stress or supplementally irrigated, resulting in a 2.0 MPa lower soil water potential in stressed plots. Increased levels of UV-B radiation reduced leaf area, total plant dry weight and net photosynthesis under well-watered conditions, but no significant UV-B effects were detected in plants concurrently subjected to water stress. The insensitivity of growth and net photosynthesis to UV-B radiation in water-stressed plants may be related to anatomical and biochemical changes induced by water stress. These include an increase in the concentration of UV absorbing compounds in leaf tissues and leaf thickening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号