首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Aluminum ion complexed 5,8-di-Br-hypocrellin B is a new water-soluble perylenequinonoid derivative with enhanced absorption over hypocrellin B (HB) in the phototherapeutic window (600-900 nm). Electron paramagnetic resonance and 9,10-diphenyl-anthracene bleaching methods were used to investigate the photosensitizing activity of [AL2(5,8-di-Br-HB)Cl4]n in the presence of oxygen. Singlet oxygen, superoxide anion radical and hydroxyl radical can be generated by [AL2(5,8-di-Br-HB)CL4]n photosensitization. Singlet oxygen (1O2) is formed via energy transfer from triplet-state [AL2(5,8-di-Br-HB)CL4]n to ground-state molecular oxygen. 1O2 participates in the generation of a portion of superoxide anion radical (O2.-). Besides superoxide anion radical (O2.-) may originate from the electron transfer between the triplet-state [AL2(5,8-di-Br-HB)CL4]n and the ground-state molecular oxygen. OH is formed through the Fenton-Haber-Weiss reaction and the decomposition of DMPO-1O2 adduct. Compared with HB [AL2(5,8-di-Br-HB)CL4]n primarily remains and enhances the generation efficiency of superoxide anion radical and hydroxyl radical but that of singlet oxygen decreases.  相似文献   

2.
Electron-transfer reduction of molecular oxygen (O2) by the phenolate anion (1-) of a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (1H), occurred to produce superoxide anion, which could be directly detected by a low-temperature EPR measurement. The rate of electron transfer from 1- to O2 was relatively slow, since this process is energetically unfavourable. The one-electron oxidation potential of 1- determined by cyclic voltammetric measurements is sufficiently negative to reduce 2,2-bis(4-tert-octylphenyl)-1-picrylhydrazyl radical (DOPPH*) to the corresponding one-electron reduced anion, DOPPH-, suggesting that 1- can also act as an efficient radical scavenger.  相似文献   

3.
Cellulose is the most abundant resource of regenerative biomass on earth. But due to the complexity of its structure, its degradation mechanism was failed to fully understand. It makes a great limit to its full utility. In nature, wood decay is mainly accomplished by some wood-degrading fungi such as G.trabeum et al.. It is well-known that cellulases are the most important components of degrading cellulose. But because the cellulase activity is low, the complete utility of cellulose by e…  相似文献   

4.
5.
分析了可见光/H2O2体系中产生协同敏化效应的原因. 通过分析苯酚红、 甲基橙、 天青Ⅰ及三者混合物的紫外-可见光谱发现, 三者混合后拓宽了在可见光区的响应范围, 提高了对可见光的利用率. 采用邻菲罗啉法、 二苯基卡巴肼法和磷钼酸铵分光光度法分别测试了上述有色物在可见光/H2O2体系中产生光生电子e、 单线态氧和超氧阴离子自由基的量, 结果表明, 三者混合物在可见光下超氧阴离子自由基的产量明显比单独有色物的高, 光生电子和单线态氧的产量相差不大, 说明超氧阴离子自由基产量的提高是产生协同敏化的主要原因. 测试结果还证实光生电子不能催化过氧化氢产生羟自由基.  相似文献   

6.
Dioxygen accelerates back electron transfer (BET) processes between a fullerene radical anion (C60) and a radical cation of zinc porphyrin (ZnP) in photolytically generated ZnP.+-C60.- and ZnP.+-H2P-C60.- radical ion pairs. The rate constant of BET increases linearly with increasing oxygen concentration without, however, forming reactive oxygen species, such as singlet oxygen or superoxide anion. When ferrocene (Fc) is used as a terminal electron donor moiety instead of ZnP (i.e., Fc-ZnP-C60), no catalytic effects of dioxygen were, however, observed for the BET in Fc+-ZnP-C60.-, that is, from C60.- to the ferricenium ion. In the case of ZnP-containing C60 systems, the partial coordination of O2 to ZnP.+ facilitates an intermolecular electron transfer (ET) from C60.- to O2. This rate-determining ET step is followed by a rapid intramolecular ET from O2.- to ZnP.+ in the corresponding O2.--ZnP.+ complex and hereby regenerating O2. In summary, O2 acts as a novel catalyst in accelerating the BET of the C60.--ZnP.+ radical ion pairs.  相似文献   

7.
The photochemistry of benzanthrone (7H-benz[de]-anthracene-7-one) has been studied using electron paramagnetic resonance (EPR) in conjunction with the spin trapping technique and the direct detection of singlet molecular oxygen luminescence. Irradiation (lambda ex = 394 nm) of benzanthrone (BA) in aerated ethanol, dimethylsulfoxide or benzene resulted in the generation of superoxide (O2-.) which was trapped by 5,5-dimethyl-1-pyrroline-N-oxide. The ethoxy radical was also detected in ethanol. Photolysis of BA in deaerated basic ethanol led to the formation of BA anion radical, BA-., which was detected directly by ESR. This radical anion decayed back to BA with a unimolecular rate constant of 1.5 x 10(-3) s-1. The 1O2 quantum yields (lambda ex greater than 345 nm) for BA in ethanol, 90% ethanol and basic ethanol (0.1N NaOH) were 0.89, 0.88 and 0.28 respectively relative to Rose Bengal. The lower yield of 1O2 in basic ethanol may be attributable to the reaction of oxygen with BA-. (which is generated in higher yield at alkaline pH) to give O2-.. These findings suggest that on exposure to light BA can generate active oxygen species which may be responsible for the photocontact dermatitis caused by BA in industrial workers exposed to this chemical.  相似文献   

8.
The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA [identical with] pcaH) efficiently catalyzes the oxidation of 2-propanol by hydrogen peroxide to give acetone. UV-vis spectroscopic monitoring of the reaction as well as the kinetics lead to the conclusion that the crucial step of the process is the monomolecular decomposition of a diperoxovanadium(V) complex containing the pca ligand to afford the peroxyl radical, HOO(.-) and a V(IV) derivative. The rate-limiting step in the overall process may not be this (rapid) decomposition itself but (prior to this step) the slow hydrogen transfer from a coordinated H2O2 molecule to the oxygen atom of a pca ligand at the vanadium center: "(pca)(O=)V...O2H2" --> "(pca)(HO-)V-OOH". The V(IV) derivative reacts with a new hydrogen peroxide molecule to generate the hydroxyl radical ("V(IV)" + H2O2 --> "V(V)" + HO(-) + HO(.-)), active in the activation of isopropanol: HO(.-) + Me2CH(OH) --> H2O + Me2C(.-)(OH). The reaction with an alkane, RH, in acetonitrile proceeds analogously, and in this case the hydroxyl radical abstracts a hydrogen atom from the alkane: HO(.-) + RH --> H2O + R(.-). These conclusions are in a good agreement with the results obtained by Bell and co-workers (Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. B 2005, 109, 17984-17992) who recently carried out a density functional theory study of the mechanism of radical generation in the reagent under discussion in acetonitrile.  相似文献   

9.
A hydrogen bond formed between the superoxide anion and the ammonium ion (NH4+) accelerates electron transfer from the C60 radical anion to oxygen significantly, whereas the tetra-n-butylammonium ion has no ability to form a hydrogen bond with the superoxidie anion, exhibiting no acceleration of the electron-transfer reduction of oxygen. The second-order rate constant of electron transfer from C60*- to O2 increases linearly with increasing concentration of NH4+. This indicates that O2*- produced in the electron transfer from C60 to O2 is stabilized by 1:1 complex formation between O2*- and NH4+. The 1:1 complex formed between O2*- and NH4+ was detected by ESR. The binding of O2*- with NH4+ results in a positive shift of the reduction potential of O2 with increasing concentration of NH4+, leading to the acceleration of electron transfer from C60*- to O2.  相似文献   

10.
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).  相似文献   

11.
A novel method has been employed to prepare 2-butylamino-2-demethoxy hypocrellin A (BADMHA) and 2-butylamino-2-demethoxy hypocrellin B (BADMHB). Both compounds exhibit stronger absorption at the phototherapeutic window (600-900 nm). The spin trapping and spin counteraction studies have shown that they are both efficient generators of the active oxygen (1O2, O2*-) in the aerobic condition. Under the anaerobic condition they generate non-oxygen free radical (semiquinone radical anion), and the active oxygen mechanism of photosensitization can be converted into non-oxygen free radical mechanism with the depletion of oxygen. The quantum yields of 1O2 generation of BADMHA and BADMHB are 0.46 and 0.44, respectively. Both are lower than those of their parent compounds HA and HB. But the productions of superoxide anion are enhanced significantly compared with HA and HB, indicating they are both favorable Type I phototherapeutic agents.  相似文献   

12.
Initiated oxidation of cumene with oxygen in the presence of various phenol antioxidants and a supramolecular system containing the oxygen radical anion of was studied. It is shown that superoxide anion and ionol, hydroquinone, and ethyl gallate are the antagonists in the process of inhibition of the radical chain oxidation. Simultaneous introduction of the ascorbic acid and the radical anion of oxygen caused the synergistic effect.  相似文献   

13.
Research on Chemical Intermediates - Among the reactive oxygen species, the superoxide anion radical (O 2 ·? ) has a fundamental role in several biological functions. Consequently, its...  相似文献   

14.
Recently, it has been reported that curcumin, which is known as a potent antioxidant, acts as a non- stressful and non-cytotoxic inducer of the cytoprotective heme oxygenase (HO)-1. In this study, naturally occurring curcuminoids, such as pure curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), were compared for their potential ability to modulate HO-1 expression and cytoprotective activity in human endothelial cells. All three curcuminoids could induce HO-1 expression and HO activity with differential levels. The rank order of HO activity was curcumin, DMC and BDMC. In comparison with endothelial protection against H2O2-induced cellular injury, cytoprotective capacity was found to be highest with curcumin, followed by DMC and BDMC. Interestingly, cytoprotective effects afforded by curcuminoids were considerably associated with their abilities to enhance HO activity. Considering that the main difference among the three curcuminoids is the number of methoxy groups (none for BDMC, one for DMC, and two for curcumin), the presence of methoxy groups in the ortho position on the aromatic ring was suggested to be essential to enhance HO-1 expression and cytoprotection in human endothelial cells. Our results may be useful in designing more efficacious HO-1 inducers which could be considered as promising pharmacological agents in the development of therapeutic approaches for the prevention or treatment of endothelial diseases caused by oxidative damages.  相似文献   

15.
4-Hydroxyquinoline (4-OHQ) and 8-hydroxyquinoline (8-OHQ), two compounds of interest because of their bioactivity and their structural relation with bioactive products, are effectively photooxygenated when irradiated with visible light in the presence of riboflavin (Rf) (vitamin B2) in solution in air-saturated water-methanol (9:1). Rf behaves as a dye-sensitiser, since both quinolines are transparent to visible light. 8-OHQ degrades about five times faster than 4-OHQ. Kinetic data obtained through time-resolved and stationary detection of Rf-electronically excited states indicate that a superoxide radical anion-mediated mechanism exclusively operates for 4-OHQ, whereas singlet molecular oxygen--mainly--plus superoxide radical anion is the species that reacts with 8-OHQ. The sensitiser Rf, which is known to photodegrade under visible-light aerobic irradiation, is regenerated in the presence of any of the quinolines through an electron transfer process that produces superoxide radical anion. The overall picture indicates that both quinolines act as sacrificial scavengers of the photogenerated oxygen species, thus preventing the photodegradation of Rf.  相似文献   

16.
The formation and reactivity of the triplet state and free radicals of mefloquine hydrochloride (MQ) have been investigated by pulse radiolysis and flash photolysis. The excited triplet, cation radical and anion radical have been produced and their absorption characteristics determined. The triplet-triplet absorption spectrum of MQ showed a maximum at 430 nm, with a molar absorption coefficient of 3600 M(-1) cm(-1) and the quantum yield for intersystem crossing was determined to be close to unity. Deactivation of the triplet, in the absence of oxygen, led to the formation of MQ cation and/or anion radicals. The molar absorption coefficient of the cation radical at 330 nm was determined to be 2300 M(-1) cm(-1), whilst that for the anion radical was 2400 M(-1) cm(-1) at 620 nm and 3600 M(-1) cm(-1) at 350 nm. The molar absorption coefficients of the proposed neutral radical at 320 nm and 520 nm were 4000 M(-1) cm(-1) and 1300 M(-1) cm(-1) respectively. The quantum yield for the formation of singlet oxygen, sensitized by MQ triplet, was determined to be close to unity. Aqueous solutions of MQ were found to photoionize to yield hydrated electron and cation radical of MQ in a biphotonic process. The influences of pH, buffer concentration, oxygen concentration and addition of sodium azide on the formation and reactivity of the transients were evaluated. The reactions between MQ and solvated electrons and superoxide anion were also studied.  相似文献   

17.
The photoinduced oxidation of 1-naphthol to 1,4-naphthoquinone and of 5-hydroxy-1-naphthol to 5-hydroxy-1,4-naphthoquinone was studied by steady-state and time-resolved techniques. The direct photooxidation of naphthols in methanol or water takes place by reaction of the naphoxyl radical ((?)ONaph) with the superoxide ion radical (O(2)(?-)), the latter of which results from the reaction of the solvated electron with oxygen after photoionization. The sensitized oxidation takes place by energy transfer from the xanthene triplet state to oxygen. From the two oxygen atoms, which are consumed, one is incorporated into the naphthol molecule giving naphthoquinone and the second gives rise to water. The effects of eosin, erythrosin, and rose bengal in aqueous solution, pH, and the oxygen and naphthol concentrations were studied. The quantum yield of the photosensitized transformation was determined, which increases with the naphthol concentration and is largest at pH > 10. The quantum yield of oxygen uptake is similar. The pathway involving singlet molecular oxygen is suggested to operate for the three sensitizers. The alternative pathway via electron transfer from the naphthol to the xanthene triplet state and subsequent reaction of (?)ONaph with O(2)(?-), the latter of which is formed by scavenging of the xanthene radical anion by oxygen, does also contribute.  相似文献   

18.
采用密度泛函理论方法在M06-2X/6-311G*水平上模拟了不同反应条件下, TiO2对苯甲醛的光催化还原和氧化的反应. 计算结果表明, 苯甲醛的光催化还原和氧化反应均可在常温下发生; 在缺氧但有乙醇存在的条件下, 乙醇分子可与氧化性物质发生反应, 生成醇自由基, 苯甲醛主要发生光催化还原反应生成苯甲醇; 在有氧气但无乙醇存在条件下, 还原性的光生电子被氧气捕获, 避免了苯甲醛被还原, 主要发生光催化氧化反应生成苯甲酸.  相似文献   

19.
We have investigated the HO(2) adsorption and acid dissociation process on the surface of (H(2)O)(20) and (H(2)O)(21) clusters by using quantum-chemistry calculations. Our results show that the radical forms a stable hydrogen-bond complex on the cluster. The HO(2) acid dissociation is more favorable in the case of the (H(2)O)(21) cluster, for which the inner water molecule plays a crucial role. In fact, acid dissociation of HO(2) is found to occur in two steps. The first step involves H(2) O autoionization in the cluster, and the second one involves the proton transfer from the HO(2) radical to the hydroxide anion. The presence of the HO(2) radicals on the surface of the cluster facilitates water autoionization in the cluster.  相似文献   

20.
存在还原性的生物分子如甲硫氨酸、尿酸和 还原性谷胱甘肽时,竹红菌甲素经受单电子还原形成甲素的半醌自由基、在去氧溶液中观察到了 甲素半醌负离子自由基的ESR信号.在充氧的溶液中检测到了超氧负离子自由基.还原剂的存在降低了单重态氧的生成并引起超氧负离子自由基的生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号