首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses electrostatic stabilization of dispersions in non-aqueous media. It begins with the theory of repulsion, with particular attention to the roles of the dielectric constant and ionic strength of the liquid medium. Results for flat plates and spheres are compared. Methods are reviewed to measure the dielectric and electric parameters in non-aqueous media, in conjunction with procedures to determine the mechanical properties of electrostatically stabilized, concentrated suspensions.From theoretical considerations it appears that the extent of the electrostatic stabilization in non-aqueous media is extremely sensitive to the dielectric constant ϵ of the liquid, affecting stability in particular through the degree of dissociation of the stabilizing electrolyte. It is essential that, besides the presence of charge on the particles, there also are certain levels of ions in the solution to ensure a sufficient force of repulsion. It is expedient to distinguish three regimes of ϵ: (a) ϵ ⩾ 11, the (semi-)polar range, where systems can be charge-stabilized more or less as in aqueous systems, (b) the low-polar regime (5 ⩽ ϵ ⩽ 11), where electrostatic stabilization is possible provided some dissociated electrolyte is present and (c) the apolar range (ϵ⩽ 5), where screening is exclusively determined by the polarization of the solvent, and where electrostatic stabilization may be more problematic.Concentrated dispersions of solids in liquid nonionic carriers with dodecyl-benzene sulphonic acid (HDBS) as the stabilizer arc good models for the ‘low polar’ category, as detailed experimental data illustrate. In such media HDBS creates a ζ-potential, and enhances the dielectric constant and the ionic strength of the continuous phase. Especially when attraction between suspended salt particles in liquid nonionics is weak, electrostatic stabilization is easily achieved. This is particularly noticed in the rheology of the concentrated suspensions of some salts.  相似文献   

2.
Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell culture medium (no serum) did not exhibit significant structural changes. The zeta potentials of lipoplexes in serum-free media (salt medium and cell culture medium) were similar (e.g., approximately -35 mV). Interestingly, the presence of serum caused the zeta potentials to become less negative (about -20 mV in OptiMEM and -10 mV in Li(2)SO(4)), even though serum contains negatively charged entities that have been demonstrated to lead to more negative zeta potentials in other lipoplex systems. The combined measurements of zeta potential and cryo-TEM are consistent with the proposition that DNA threads separate from the lipoplex in the presence of serum, resulting in a decrease in the net negative charge of the surface of the lipoplex.  相似文献   

3.
Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt‐Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data, which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate‐determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.  相似文献   

4.
Polymerization of methyl methacrylate was carried out in aqueous and nonaqueous media in the presence of some sulfonated and carboxylic organic compounds, hydroxyl radicals generated from hydrogen peroxide being used as initiators of polymerization. The occurrence of radical transfer reactions by way of hydrogen atom abstraction from the organic substrates by the ?H radicals was demonstrated by the detection of sulfonate and carboxyl endgroups in the respective polymers. It was found that the radical transfer reactions were more favored in aqueous media than in nonaqueous systems.  相似文献   

5.
The role of micellar media in analytical reaction-rate methods is discussed. The Ce(IV)As(III) reaction in the presence and absence of iodide catalyst was selected in order to study its behaviour in the presence of surfactants. Dodecyltrimethylammonium bromide (DTAB) was found to increase the reaction rate of both systems. Evidence for a “micellar catalysis” effect by DTAB is demonstrated. The analytical potential of micelles in terms of sensitivity and enhanced selectivity is also discussed.  相似文献   

6.
Molecular imprinting has received significant attention in recent years, as it provides a viable method for creating synthetic receptors capable of selectively recognizing specific target molecules. Despite significant growth within the field, the majority of template molecules studied thus far have been characterized by their low molecular weight and insolubility in aqueous systems. In biological systems, molecular recognition events occur in aqueous media. Therefore, in order to create molecularly imprinted polymers capable of mimicking biological processes, it is necessary to synthesize artificial receptors which can selectively recognize their respective target biological macromolecules such as peptides and proteins in aqueous media. In this review, we discuss the challenges associated with the imprinting of peptides and proteins in aqueous media. In addition, we discuss the significant progress which has been made within the field.  相似文献   

7.
The results of investigations of specific features of N-vinylsuccinimide copolymerization with vinylacetate and N-vinylpyrrolidone in different media in the presence of various initiating systems are presented. A possibility of controlling the reactivity of comonomers and the structure of forming copolymers is demonstrated. The effect of the preparation method on the compositional homogeneity of copolymers is discussed.  相似文献   

8.
Microarchitectural features of opaque porous media and biological tissues are of great importance in many scientific disciplines ranging from chemistry, material sciences, and geology to biology and medicine. Noninvasive characterization of coherently organized pores is rather straightforward since conventional diffusion magnetic resonance methods can detect anisotropy on a macroscopic scale; however, it remains extremely challenging to directly infer on microarchitectural features on the microscopic scale in heterogeneous porous media and biological cells that are comprised of randomly oriented compartments, a scenario widely encountered in Nature. Here, we show that the angular bipolar double-pulsed-field-gradient (bp-d-PFG) methodology is capable of reporting on unique microarchitectural features of highly heterogeneous systems. This was demonstrated on a toluene-in-water emulsion system, quartz sand, and even biological specimens such as yeast cells and isolated gray matter. We find that in the emulsion and yeast cells systems, the angular bp-d-PFG methodology uniquely revealed nearly an image of the pore space, since it conveyed direct microarchitectural information such as compartment shape and size. In two different quartz sand specimens, the angular bp-d-PFG experiments demonstrated the presence of randomly oriented anisotropic compartments. We also obtained unequivocal evidence that diffusion in interconnected interstices is restricted and therefore non-Gaussian. In biological contexts, the angular bp-d-PFG experiments could uniquely differentiate between spherical cells and randomly oriented compartments in gray matter tissue, information that could not be obtained by conventional NMR methods. The angular bp-d-PFG methodology also performs very well even when severe background gradients are present, as is often encountered in realistic systems. We conclude that this method seems to be the method of choice for characterizing the microstructure of porous media and biological cells noninvasively.  相似文献   

9.
A large number of substrates have hitherto been employed in the Belousov-Zhabotinsky (B-Z) oscillatory system in pure aqueous medium. A systematic study of aromatic bromate oscillators is limited by solubility problem relating to the compounds and the brominated derivatives. The use of aqueous-organic mixed media for the oscillatory study is found to be highly useful for the study of water insoluble substances. A comparative study of the oscillatory behavior of gallic acid as substrate in pure aqueous as well as in a number of mixed media have been made in order to ascertain the suitability of mixed media in oscillatory systems. The alteration of oscillatory characteristics in the presence of organic solvent can be understood in terms of the Field-Koros-Noyes (FKN) mechanism. The oscillatory behavior of seventeen new substrates in the ferroin-catalyzed bromate system in 20% (v) acetonitrile is also presented and discussed in this communication. The reactivity of structurally related substrates has been correlated to the structure in terms of the relevant oscillatory parameters. The use of aqueous-organic mixed media in oscillatory systems would enable the investigation of new classes of substrates since getting them into the solution phase would no longer be a limitation. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
This mini-review provides coverage of chitosan-based adsorbents and their modified forms as sustainable solid-phase extraction (SPE) materials for precious metal ions, such as gold species, and their complexes in aqueous media. Modified forms of chitosan-based adsorbents range from surface-functionalized systems to biomaterial composites that contain inorganic or other nanomaterial components. An overview of the SPE conditions such as pH, temperature, contact time, and adsorbent dosage was carried out to outline how these factors affect the efficiency of the sorption process, with an emphasis on gold species. This review provides insight into the structure-property relationships for chitinaceous adsorbents and their metal-ion removal mechanism in aqueous media. Cross-linked chitosan sorbents showed a maximum for Au(III) uptake capacity (600 mg/g), while S-containing cross-linked chitosan display favourable selectivity and uptake capacity with Au(III) species. Compared to industrial adsorbents such as activated carbon, modified chitosan sorbents display favourable uptake of Au(III) species, especially in aqueous media at low pH. In turn, this contribution is intended to catalyze further research directed at the rational design of tailored SPE materials that employ biopolymer scaffolds to yield improved uptake properties of precious metal species in aqueous systems. The controlled removal of gold and precious metal species from aqueous media is highly relevant to sustainable industrial processes and environmental remediation.  相似文献   

11.
Stuart J. Williams 《Electrophoresis》2013,34(9-10):1400-1408
This work demonstrates the use of thin film heaters to enhance electrothermal pumping in microfluidic systems. Thin film heating electrothermal pumping is more efficient than Joule heating alone. Numerical simulations of an asymmetric electrode array are performed to demonstrate the advantages of incorporating thin film heaters. This specific simulation shows that thin film heater electrothermal pumping provides approximately two and one‐half times more volumetric flow than Joule heating alone for the same input power to both systems. In addition, external heating allows for electrothermal pumping to be applicable to low conductivity media.  相似文献   

12.
We report the synthesis of a novel purine based amphiphile; di-oleyladenosinephosphocholine (DOAPC). Light microscopy, TEM and QELS studies on DOAPC in aqueous media support the formation of lamellar systems. These investigations indicate that the presence of adenine does not prohibit the formation of lamellar organizations. Stable small unilamellar vesicles can be prepared by using extrusion techniques.  相似文献   

13.
Complexation of AlIIIby 8-hydroxyquinoline and fluorescence behavior of the quinolinate(s) were studied in reverse micellar systems at low water content, and compared to aqueous media. Two surfactants were used: one was cationic (CTAC: cetyltrimethylammonium chloride) and the other was anionic (AOT: sodium bis(2-ethylhexyl)sulfosuccinate). The results obtained in the CTAC/dichloromethane system (W= [H2O]/[surfactant] = 0.9) showed that complexation occurred very likely in the oil phase and no micellar effect was observed. On the contrary, in the presence of AOT, specific micellar effects were observed due to the presence of the anionic polar heads: stabilization of the positively charged 1:1 and 1:2 chelates, at the expense of the neutral water-insoluble 1:3 chelate which is formed in aqueous solutions under similar conditions;drastic fluorescence enhancement factorsof 120 and 100 in AOT/heptane (W= 1.5) and AOT/dichloromethane (W= 1.6), respectively. Such factors have never been reported so far in either hydroorganic or direct micellar systems. In return, the length of time for the production of the complex(es) is increased because of the microheterogeneity of the medium and the small sizes of the water pools.  相似文献   

14.
The use of fluorescence to study physicochemical structures of alcohol/surfactant/water systems, microemulsions and reversed micelles is reviewed, and the application of these media in analytical fluorescence spectroscopy is discussed. The sodium dodecylsulfate/1-pentanol/heptane/ water system is studied by using pseudo-ternary diagrams. Wide areas of existence of thermodynamically stable and optically clear phases (Winsor IV and two liquid crystals) were found both in the absence and presence of sodium sulfate (0.2 M). The influence of the composition of media on the fluorescence characteristics of pyrene, benzo [e]pyrene, 2-naphthol and p-amino-benzoic acid is studied.  相似文献   

15.
In this present study, we report on new methodology for determining the Critical Micelle Concentration (CMC) of a neutral surfactant Triton X-100 (TX-100) both in aqueous and non-aqueous media based on a non-invasive approach. The presence of the phenyl moiety of TX-100 was made use of as an intrinsic fluorophore and steady-state and time-resolved spectroscopy has been used to characterize the micellar systems. There are reports that external fluorophores may bring about some structural changes in the systems and the perturbations caused by these fluorophores in micellar systems may affect the shape and size of the micelles. We have also used three probes namely ANS, Rh6G and C-480 to determine the CMC of TX-100 both in aqueous and non-aqueous media and the values obtained agree very well with those estimated by the non-invasive techniques. Interestingly, for our system, we have conclusively proved that the external probes have almost no effect on the process of micellization. Although, both the invasive and non-invasive technologies report almost the same values of CMC, yet the latter methodology is free from any external perturbations and this makes the micellar/reverse micellar system, which may interact with other biological systems less prone to any physical distortions.  相似文献   

16.
The enantioselective hydrogenation of N-(1-phenylethylidene)aniline using cationic iridium complexes with chiral phosphinooxazoline ligands was studied as a chemical probe to assess the potential of ionic liquid/carbon dioxide (IL/CO2) media for, multiphase catalysis. The biphasic system leads to activation, tuning, and immobilization of the catalyst that would be impossible in classical organic solvent systems or in either of the two unconventional media separately. In particular it is demonstrated that (i) the presence of CO2 can be beneficial or even mandatory for efficient hydrogenation in the IL; (ii) the precursor is activated in the IL by anion exchange allowing one to use in situ catalysts; (iii) the anion of the IL greatly influences the selectivity of the catalyst; (iv) the products are readily isolated from the catalyst solution by CO2 extraction without cross contamination of IL or catalyst; and (v) the IL leads to enhanced stability of the catalyst. These results are corroborated and rationalized on the basis of the physicochemical properties of the biphasic medium and the chemical characteristics of the catalytic systems.  相似文献   

17.
In systems composed of water and hydrocarbons, Van der Waals interactions are dominated by the nonretarded, classical (Keesom) part of the Lifshitz interaction; the interaction is screened by salt and extends over mesoscopic distances of the order of the size of the (micellar) constituents of complex fluids. We show that these interactions are included intrinsically in a recently introduced local Monte Carlo algorithm for simulating electrostatic interactions between charges in the presence of nonhomogeneous dielectric media.  相似文献   

18.
The effect of Geobacter sulfurreducens cells was studied on the electrochemical behaviour of 304L stainless steel, emphasizing the role of the soluble electron acceptor (fumarate). In fumarate-lacking media, the presence of G. sulfurreducens induced free potential ennoblement in a few hours. This ennoblement has already been observed in standard media that contained fumarate. Our previous studies have shown that G. sulfurreducens shifted the pitting potential toward the positive values. The pits induced by the presence of the bacteria were wider and deeper than in the absence of bacteria. Here, in fumarate-lacking media, similar shift in pitting potential was observed, but the repassivation phase was strongly improved. AFM analysis showed that pits were identical with those observed in the absence of bacteria at lower potential. In contrast with all the previous work where G. sulfurreducens enhanced corrosion, here at a low concentration of electron acceptor, the presence of the bacteria protected the steel against pitting.  相似文献   

19.
The establishment of new analytical methods which improve quality and sensitivity in the determination of environmental pollutants in liquid and solid samples is demanded. The use of micellar systems have become an advantageous tool for the extraction of pollutant compounds, due to their easy handling, biodegradability, and the one-step procedure, and they are compatible with the hydroalcoholic mobile phases used in HPLC. The focus of this review is to present recently developed methods and the main trends in the use of micellar media combined with solid-phase microextraction and solid-phase extraction in the chromatographic analysis of organic compounds in different types of environmental matrix, including water, sediments, and biological samples. Selected samples illustrate the benefits of these systems in the whole of analytical process. The advantages of micellar media over conventional extractants are reduction of solvent usage, low cost, easy handling, and non-toxic procedure.  相似文献   

20.
A series of "Balanced Catalytic Surfactants" (BCS) [(Cn)2N(C1)2]2MoO4 (n = 8, 9, 10, 12) based on amphiphilic double-tailed quaternary ammonium with molybdate as a counterion has been developed for the dark singlet [4 + 2] cyclooxygenation of organic substrates in three-liquid-phase microemulsion systems. These cationic surfactants form three-liquid-phase microemulsion systems at room temperature in the presence of an appropriate organic solvent and water without addition of any cosurfactant or electrolyte. Comparative peroxidation of rubrene points out the specific advantages of these three-phase media over phase transfer catalysis in two phase systems and on conventional one-phase microemulsions based on sodium molybdate: (i) only three constituents, (ii) low amounts of surfactants, (iii) insensitivity to water dilution, (iv) fast separation of the three phases, (v) straightforward recovery of the product and the surfactant from the oil and microemulsion phases, respectively. The preparative peroxidation of alpha-terpinene and 1,4,5-trimethylnaphtalene was performed in the ternary systems [(C8)2N(C1)2]2MoO4/water/tert-butyl acetate or benzene. The reusability of the catalyst, the catalytic nature of the BCS, and the ability of the systems to oxidize poorly reactive substrates were demonstrated showing the broadness of the applicability of such systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号