首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using broken-symmetry density functional theory, we have studied an experimentally proposed model for ribonucleotide reductase (RNR) intermediate X, which contains a single oxo bridge, one terminal H(2)O or OH(-) ligand, a bidentate carboxylate from Glu115, and a mono-oxygen bridge provided by Glu238. For the models proposed here, the terminal H(2)O/OH(-) ligand binds to site Fe1 which is closer to Tyr122. The diiron centers are assigned as high-spin Fe(III)Fe(IV) and antiferromagnetically coupled to give the S(total) = (1)/(2) ground state. Calculations show that the model with a terminal hydroxide in the antiferromagnetic [S(Fe1) = 2, S(Fe2) = (5)/(2)] state (Fe1 = Fe(IV), Fe2 = Fe(III)) is the lowest energy state, and the calculated isomer shift and quadrupole splitting values for this cluster are also the best among the four clusters studied here when compared with the experimental values. However, the DFT-calculated (1)H proton and (17)O hyperfine tensors for this state do not show good agreement with the experiments. The calculated Fe1-Fe2 distances for this and the other three clusters at >2.9 A are much longer than the 2.5 A which was predicted by the EXAFS measurements. The mono-oxygen bridge provided by Glu238 tends to be closer to one of the Fe sites in all clusters studied here, and it does not function as a bridge in helping to produce a short Fe-Fe distance. Overall, the models tested here are not likely to represent the core structure of RNR intermediate X. The model with the terminal OH(-) binding to the Fe1(III) center shows the best calculated (1)H proton and (17)O hyperfine tensors compared with the experimental values. This supports the earlier proposal based on analysis of ENDOR spectra (Willems et al.(16)) that the terminal oxygen group binds to the Fe(III) site in RNR-X.  相似文献   

2.
The reaction of a class I ribonucleotide reductase (RNR) begins when a cofactor in the β subunit oxidizes a cysteine residue ~35 ? away in the α subunit, generating a thiyl radical. In the class Ic enzyme from Chlamydia trachomatis (Ct), the cysteine oxidant is the Mn(IV) ion of a Mn(IV)/Fe(III) cluster, which assembles in a reaction between O(2) and the Mn(II)/Fe(II) complex of β. The heterodinuclear nature of the cofactor raises the question of which site, 1 or 2, contains the Mn(IV) ion. Because site 1 is closer to the conserved location of the cysteine-oxidizing tyrosyl radical of class Ia and Ib RNRs, we suggested that the Mn(IV) ion most likely resides in this site (i.e., (1)Mn(IV)/(2)Fe(III)), but a subsequent computational study favored its occupation of site 2 ((1)Fe(III)/(2)Mn(IV)). In this work, we have sought to resolve the location of the Mn(IV) ion in Ct RNR-β by correlating X-ray crystallographic anomalous scattering intensities with catalytic activity for samples of the protein reconstituted in vitro by two different procedures. In samples containing primarily Mn(IV)/Fe(III) clusters, Mn preferentially occupies site 1, but some anomalous scattering from site 2 is observed, implying that both (1)Mn(II)/(2)Fe(II) and (1)Fe(II)/(2)Mn(II) complexes are competent to react with O(2) to produce the corresponding oxidized states. However, with diminished Mn(II) loading in the reconstitution, there is no evidence for Mn occupancy of site 2, and the greater activity of these "low-Mn" samples on a per-Mn basis implies that the (1)Mn(IV)/(2)Fe(III)-β is at least the more active of the two oxidized forms and may be the only active form.  相似文献   

3.
The structural and physicochemical properties of the manganese-corrolazine (Cz) complexes (TBP8Cz)Mn(V)O (1) and (TBP8Cz)Mn(III) (2) (TBP = p-tert-butylphenyl) have been determined. Recrystallization of 2 from toluene/MeOH resulted in the crystal structure of (TBP8Cz)Mn(III)(CH3OH) (2 x MeOH). The packing diagram of 2 x MeOH reveals hydrogen bonds between MeOH axial ligands and meso N atoms of adjacent molecules. Solution binding studies of 2 with different axial ligands (Cl-, Et3PO, and Ph3PO) reveal strong binding, corroborating the preference of the Mn(III) ion for a five-coordinate environment. High-frequency and field electron paramagnetic resonance (HFEPR) spectroscopy of solid 2 x MeOH shows that 2 x MeOH is best described as a high-spin (S = 2) Mn(III) complex with zero-field splitting parameters typical of corroles. Structural information on 1 was obtained through an X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) study and compared to XANES/EXAFS data for 2 x MeOH. The XANES data for 1 shows an intense pre-edge transition characteristic of a high-valent metal-oxo species, and a best fit of the EXAFS data gives a short Mn-O bond distance of 1.56 A, confirming the structure of the metal-oxo unit in 1. Detailed spectroelectrochemical studies of 1 and 2 were performed revealing multiple reversible redox processes for both complexes, including a relatively low potential for the Mn(V) --> Mn(IV) process in 1 (near 0.0 V vs saturated calomel reference electrode). Chemical reduction of 1 results in the formation of a Mn(III)Mn(IV)(mu-O) dimer as characterized by electron paramagnetic resonance spectroscopy.  相似文献   

4.
With the goal of gaining insight into the structures of peroxo intermediates observed for oxygen-activating nonheme diiron enzymes, a series of metastable synthetic diiron(III)-peroxo complexes with [Fe(III)(2)(mu-O)(mu-1,2-O(2))] cores has been characterized by X-ray absorption and resonance Raman spectroscopies, EXAFS analysis shows that this basic core structure gives rise to an Fe-Fe distance of approximately 3.15 A; the distance is decreased by 0.1 A upon introduction of an additional carboxylate bridge. In corresponding resonance Raman studies, vibrations arising from both the Fe-O-Fe and the Fe-O-O-Fe units can be observed. Importantly a linear correlation can be discerned between the nu(O-O) frequency of a complex and its Fe-Fe distance among the subset of complexes with [Fe(III)(2)(mu-OR)(mu-1,2-O(2))] cores (R = H, alkyl, aryl, or no substituent). These experimental studies are complemented by a normal coordinate analysis and DFT calculations.  相似文献   

5.
Isotopic exchange between oxygens of water and mu-O bridges in the di-mu-O dimanganese complexes, [(mes-terpy)2Mn2(III/IV)(mu-O)2(H2O)2](NO3)3 (1, mes-terpy = 4'-mesityl-2,2':6',2' '-terpyridine) and [(phen)4Mn2III/IV(mu-O)2](ClO4)3 (2, phen = 1,10-phenanthroline), has been investigated by a study of the kinetics of exchange. The data provide evidence for distinct mechanisms of exchange in 1 and 2 and suggest that these differences arise due to the presence and absence of terminal water-binding sites in 1 and 2, respectively. Exchange of oxygen atoms between water and mu-O bridges must involve the elementary steps of bridge protonation, deprotonation, opening, and closing. On the basis of the existing literature on these reactions in oxo-bridged metal complexes and our present data, we propose pathways of exchange in 1 and 2. The mechanism proposed for 1 involves an initial fast protonation of an oxo-bridge by water coordinated to Mn(IV), followed by a slow opening of the protonated bridge as proposed earlier for an analogous complex on the basis of DFT calculations. The mechanism proposed for 2 involves initial dissociation of phen, followed by coordination of water at the vacated sites, as observed for rearrangement of 2 to a trinuclear complex. The subsequent steps are proposed to be analogous to those for 1. Our results are discussed in the context of data on 18O-labeled water isotope exchange in photosystem II and provide support for the existence of fully protonated terminal waters bound to Mn in the O2-evolving complex of photosystem II.  相似文献   

6.
The essential catalytic radical of Class-I ribonucleotide reductase is generated and delivered by protein R2, carrying a dinuclear metal cofactor. A new R2 subclass, R2c, prototyped by the Chlamydia trachomatis protein was recently discovered. This protein carries an oxygen-activating heterodinuclear Mn(II)/Fe(II) metal cofactor and generates a radical-equivalent Mn(IV)/Fe(III) oxidation state of the metal site, as opposed to the tyrosyl radical generated by other R2 subclasses. The metal arrangement of the heterodinuclear cofactor remains unknown. Is the metal positioning specific, and if so, where is which ion located? Here we use X-ray crystallography with anomalous scattering to show that the metal arrangement of this cofactor is specific with the manganese ion occupying metal position 1. This is the position proximal to the tyrosyl radical site in other R2 proteins and consistent with the assumption that the high-valent Mn(IV) species functions as a direct substitute for the tyrosyl radical.  相似文献   

7.
Several models for the active site structure of class I ribonucleotide reductase (RNR) intermediate X have been studied in the work described in this paper, using broken-symmetry density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model. The calculated properties, including geometries, spin states, 57Fe, 1H, and 17O hyperfine tensors, M?ssbauer isomer shifts, and quadrupole splittings, and the estimation of the Fe(IV) d-d transition energies have been compared with the available experimental values. On the basis of the detailed analysis and comparisons, we propose a definite form for the active site structure of class I RNR intermediate X, which contains an Fe1(III)Fe2(IV) center (where Fe1 is the iron site closer to Tyr122, and the two iron sites are high-spin antiferromagnetically coupled to give a total 1/2 net spin), two mu-oxo bridges, one terminal water which binds to Fe1(III) and also H-bonds to both side chains of Asp84 and Glu238, and one bidentate carboxylate group from the side chain of Glu115.  相似文献   

8.
9.
The geometric and electronic structure of the untethered heme-peroxo-copper model complex [(F(8)TPP)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](ClO(4)) (1) has been investigated using Cu and Fe K-edge EXAFS spectroscopy and density functional theory calculations in order to describe its geometric and electronic structure. The Fe and Cu K-edge EXAFS data were fit with a Cu...Fe distance of approximately 3.72 A. Spin-unrestricted DFT calculations for the S(T) = 2 spin state were performed on [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) as a model of 1. The peroxo unit is bound end-on to the copper, and side-on to the high-spin iron, for an overall mu-eta(1):eta(2) coordination mode. The calculated Cu...Fe distance is approximately 0.3 A longer than that observed experimentally. Reoptimization of [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) with a 3.7 A Cu...Fe constrained distance results in a similar energy and structure that retains the overall mu-eta(1):eta(2)-peroxo coordination mode. The primary bonding interaction between the copper and the peroxide involves electron donation into the half-occupied Cu d(z)2 orbital from the peroxide pi(sigma) orbital. In the case of the Fe(III)-peroxide eta(2) bond, the two major components arise from the donor interactions of the peroxide pi*(sigma) and pi*(v) orbitals with the Fe d(xz) and d(xy) orbitals, which give rise to sigma and delta bonds, respectively. The pi*(sigma) interaction with both the half-occupied d(z)2 orbital on the copper (eta(1)) and the d(xz) orbital on the iron (eta(2)), provides an effective superexchange pathway for strong antiferromagnetic coupling between the metal centers.  相似文献   

10.
The spectroscopic properties, electronic structure, and reactivity of the low-spin Fe(III)-hydroperoxo complex [Fe(N4Py)(OOH)](2+) (1, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) are investigated in comparison to those of activated bleomycin (ABLM). Complex 1 is characterized by Raman features at 632 (Fe-O stretch) and 790 cm(-1) (O-O stretch), corresponding to a strong Fe-O bond (force constant 3.62 mdyn/A) and a weak O-O bond (3.05 mdyn/A). The UV-vis spectrum of 1 shows a broad absorption band around 550 nm that is assigned to a charge-transfer transition from the hydroperoxo to a t(2g) d orbital of Fe(III) using resonance Raman and MCD spectroscopies and density functional (DFT) calculations. Compared to low-spin [Fe(TPA)(OH(x))(OO(t)Bu)](x+)(TPA = tris(2-pyridylmethyl)amine, x = 1 or 2), an overall similar Fe-OOR bonding results for low-spin Fe(III)-alkylperoxo and -hydroperoxo species. Correspondingly, both systems show similar reactivities and undergo homolytic cleavage of the O-O bond. From the DFT calculations, this reaction is more endothermic for 1 due to the reduced stabilization of the .OH radical compared to .O(t)Bu and the absence of the hydroxo ligand that helps to stabilize the resulting Fe(IV)=O species. In contrast, ABLM has a somewhat different electronic structure where no pi donor bond between the hydroperoxo ligand and iron(III) is present [Neese, F.; Zaleski, J. M.; Loeb-Zaleski, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11703]. Possible reaction pathways for ABLM are discussed in relation to known experimental results.  相似文献   

11.
The most recent XRD studies of Photosystem II (PS II) reveal that the His337 residue is sufficiently close to the Mn(4)Ca core of the Water Oxidising Complex (WOC) to engage in H-bonding interactions with the μ(3)-oxo bridge connecting Mn(1), Mn(2) and Mn(3). Such interactions may account for the lengthening of the Mn-Mn distances observed in the most recent and highest resolution (1.9 ?) crystal structure of PS II compared to earlier, lower-resolution (2.9 ? or greater) XRD structures and EXAFS studies on functional PS II. Density functional theory is used to examine the influence on Mn-Mn distances of H-bonding interactions, mediated by the proximate His337 residue, which may lead to either partial or complete protonation of the μ(3)-oxo bridge on models of the WOC. Calculations were performed on a set of minimal-complexity models (in which WOC-ligating amino acid residues are represented as formate and imidazole ligands), and also on extended models in which a 13-peptide sequence (from His332 to Ala344) is treated explicitly. These calculations demonstrate that while the 2.9 ? structure is best described by models in which the μ(3)-oxo bridge is neither protonated nor involved in significant H-bonding, the 1.9 ? XRD structure is better reproduced by models in which the μ(3)-oxo bridge undergoes H-bonding interactions with the His337 residue leading to expansion of the 'close' Mn-Mn distances well known from EXAFS studies at ~ 2.7 ?. Furthermore, full μ(3)-oxo-bridge protonation remains a distinct possibility during the process of water oxidation, as evidenced by the lengthening of the Mn-Mn vectors observed in EXAFS studies of the higher oxidation states of PS II. In this context, the Mn-Mn distances calculated in the protonated μ(3)-oxo bridge structures, particularly for the peptide extended models, are in close agreement with the EXAFS data.  相似文献   

12.
Much of our knowledge about molybdenum enzymes has originated from EXAFS spectroscopy. This technique provides excellent bond-length accuracy but has only limited bond-length resolution. We have used EXAFS spectroscopy with an extended data range in an attempt to improve bond-length resolution for the molybdenum enzyme sulfite oxidase. The Mo site of sulfite oxidase has two oxygen and three Mo-S ligands (two from cofactor dithiolene plus a cysteine). For the oxidized (Mo(VI)) enzyme, we find that the three Mo-S bond lengths are very similar (within 0.05 A) at 2.41 A, as are the Mo=O ligands at 1.72 A. Density functional theory shows that this is consistent with the proposed active-site structure. The reduced (Mo(IV)) enzyme shows two Mo-S bond lengths at 2.35 A and one at 2.41 A (assigned to cofactor dithiolene and cysteine, respectively, from DFT), together with one Mo=O at 1.72 A and one Mo-OH(2) at 2.30 A.  相似文献   

13.
Recently, we reported the characterization of the S = (1)/ 2 complex [Fe (V)(O)B*] (-), where B* belongs to a family of tetraamido macrocyclic ligands (TAMLs) whose iron complexes activate peroxides for environmentally useful applications. The corresponding one-electron reduced species, [Fe (IV)(O)B*] (2-) ( 2), has now been prepared in >95% yield in aqueous solution at pH > 12 by oxidation of [Fe (III)(H 2O)B*] (-) ( 1), with tert-butyl hydroperoxide. At room temperature, the monomeric species 2 is in a reversible, pH-dependent equilibrium with dimeric species [B*Fe (IV)-O-Fe (IV)B*] (2-) ( 3), with a p K a near 10. In zero field, the M?ssbauer spectrum of 2 exhibits a quadrupole doublet with Delta E Q = 3.95(3) mm/s and delta = -0.19(2) mm/s, parameters consistent with a S = 1 Fe (IV) state. Studies in applied magnetic fields yielded the zero-field splitting parameter D = 24(3) cm (-1) together with the magnetic hyperfine tensor A/ g nbeta n = (-27, -27, +2) T. Fe K-edge EXAFS analysis of 2 shows a scatterer at 1.69 (2) A, a distance consistent with a Fe (IV)O bond. DFT calculations for [Fe (IV)(O)B*] (2-) reproduce the experimental data quite well. Further significant improvement was achieved by introducing hydrogen bonding of the axial oxygen with two solvent-water molecules. It is shown, using DFT, that the (57)Fe hyperfine parameters of complex 2 give evidence for strong electron donation from B* to iron.  相似文献   

14.
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (?)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.  相似文献   

15.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

16.
Two hydroxo-bridged complexes, {[Mn(III)(3-CH(3)O)salen](2)[Cr(III)(salen)(OH)(2)]}ClO(4)·6H(2)O (1) and {[Mn(III)(5-CH(3))salen](2)(OH)}ClO(4)·3H(2)O (2) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized by the hydrolysis of the corresponding Mn(III)(Schiff-Bases) derivatives and [Cr(salen)(H(2)O)(2)]Cl precursors. X-Ray structure characterization reveals the discrete linear arched trinuclear structure of 1 and the 1D chain arrangement of 2. Magnetic experimental data and density functional theory (DFT) calculations both indicate the dominant antiferromagnetic interaction mediated by the hydroxo-bridges in both 1 and 2. Frequency-dependent AC susceptibilities reveal slow relaxation of 1 in low temperature. It is worth noting that the structure and magnetic properties of 1 is comparable to a reported cyano-bridged SMM, K[(5-Brsalen)(2)(H(2)O)(2)Mn(2)Cr(CN)(6)]·2H(2)O.  相似文献   

17.
Density functional theory (DFT) calculations have been performed on the nitrogenase cofactor, FeMoco. Issues that have been addressed concern the nature of M-M interactions and the identity and origin of the central light atom, revealed in a recent crystallographic study of the FeMo protein of nitrogenase (Einsle, O.; et al. Science 2002, 297, 871). Introduction of Se in place of the S atoms in the cofactor and energy minimization results in an optimized structure very similar to that in the native enzyme. The nearly identical, short, lengths of the Fe-Fe distances in the Se and S analogues are interpreted in terms of M-M weak bonding interactions. DFT calculations with O or N as the central atoms in the FeMoco marginally support the assignment of the central atom as N rather than O. The assumption was made that the central atom is the N atom, and steps of a catalytic cycle were calculated starting with either of two possible states for the cofactor and maintaining the same charge throughout (by addition of equal numbers of H(+) and e(-)) between steps. The states were [(Cl)Fe(II)(6)Fe(III)Mo(IV)S(9)(H(+))(3)N(3-)(Gl)(Im)](2-), [I-N-3H](2-), and [(Cl)Fe(II)(4)Fe(III)(3)Mo(IV)S(9)(H(+))(3)N(3-)(Gl)(Im)], [I-N-3H](0) (Gl = deprotonated glycol; Im = imidazole). These are the triply protonated ENDOR/ESEEM [I-N](5-) and M?ssbauer [I-N](3-) models, respectively. The proposed mechanism explores the possibilities that (a) redox-induced distortions facilitate insertion of N(2) and derivative substrates into the Fe(6) central unit of the cofactor, (b) the central atom in the cofactor is an exchangeable nitrogen, and (c) the individual steps are related by H(+)/e(-) additions (and reduction of substrate) or aquation/dehydration (and distortion of the Fe(6) center). The Delta E's associated with the individual steps of the proposed mechanism are small and either positive or negative. The largest positive Delta E is +121 kJ/mol. The largest negative Delta E of -333 kJ/mol is for the FeMoco with a N(3-) in the center (the isolated form) and an intermediate in the proposed mechanism.  相似文献   

18.
Non-heme iron and manganese species with terminal oxo ligands are proposed to be key intermediates in a variety of biological and synthetic systems; however, the stabilization of these types of complexes has proven difficult because of the tendency to form oxo-bridged complexes. Described herein are the design, isolation, and properties for a series of mononuclear Fe(III) and Mn(III) complexes with terminal oxo or hydroxo ligands. Isolation of the complexes was facilitated by the tripodal ligand tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H(3)1](3-)), which creates a protective hydrogen bond cavity around the M(III)-O(H) units (M(III) = Fe and Mn). The M(III)-O(H) complexes are prepared by the activation of dioxygen and deprotonation of water. In addition, the M(III)-O(H) complexes can be synthesized using oxygen atom transfer reagents such as N-oxides and hydroxylamines. The [Fe(III)H(3)1(O)](2-) complex also can be made using sulfoxides. These findings support the proposal of a high valent M(IV)-oxo species as an intermediate during dioxygen cleavage. Isotopic labeling studies show that oxo ligands in the [M(III)H(3)1(O)](2-) complexes come directly from the cleavage of dioxygen: for [Fe(III)H(3)1(O)](2-) the nu(Fe-(16)O) = 671 cm(-1), which shifts 26 cm(-1) in [Fe(III)H(3)1((18)O)](2-) (nu(Fe-(18)O) = 645 cm(-1)); a nu(Mn-(16)O) = 700 cm(-1) was observed for [Mn(III)H(3)1((16)O)](2-), which shifts to 672 cm(-1) in the Mn-(18)O isotopomer. X-ray diffraction studies show that the Fe-O distance is 1.813(3) A in [Fe(III)H(3)1(O)](2-), while a longer bond is found in [Fe(III)H(3)1(OH)](-) (Fe-O at 1.926(2) A); a similar trend was found for the Mn(III)-O(H) complexes, where a Mn-O distance of 1.771(5) A is observed for [Mn(III)H(3)1(O)](2-) and 1.873(2) A for [Mn(III)H(3)1(OH)](-). Strong intramolecular hydrogen bonds between the urea NH groups of [H(3)1](3-) and the oxo and oxygen of the hydroxo ligand are observed in all the complexes. These findings, along with density functional theory calculations, indicate that a single sigma-bond exists between the M(III) centers and the oxo ligands, and additional interactions to the oxo ligands arise from intramolecular H-bonds, which illustrates that noncovalent interactions may replace pi-bonds in stabilizing oxometal complexes.  相似文献   

19.
We studied the structure and stoichiometry of aqueous uranylVI hydroxo dimers and trimers by spectroscopic (EXAFS, FTIR, UV-vis) and quantum chemical (DFT) methods. FTIR and UV-vis spectroscopy were used for the speciation of uranyl complexes in aqueous solution. DFT calculations show that (UO2)2(OH)22+ has two bridging hydroxo groups with a U-U distance of 3.875 A. This result is in good agreement with EXAFS, where a U-U distance of 3.88 A was found. For the hydroxo trimer complex, DFT calculations show that the species (UO2)3(O)(OH)3+ with oxo bridging in the center is energetically favored in comparison to its stoichiometric equivalent (UO2)3(OH)5+. This is again in line with the EXAFS result, where a shorter U-U distance of 3.81-3.82 A and evidence for oxo bridging in the center were found. Several stable intermediates which lie several tens of kJ/mol above that of (UO2)3(O)(OH)3+ were identified, and their structures, energies, and intramolecular proton-transfer reaction are discussed.  相似文献   

20.
The adsorption of Ga(III) at the water-alpha-FeOOH (goethite) interface has been investigated by means of quantitative adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. Under the conditions studied, pH range 3-11 and surface coverages of 0.9-3.2 micromol/m2, Ga(III) was found to adsorb strongly to alpha-FeOOH, and the surface species were more resistant toward hydrolysis and formation of soluble Ga(OH)4- than either solid gallium hydroxides or soluble polynuclear complexes. The EXAFS measurements revealed the presence of octahedral Ga(III) complexes at the water-alpha-FeOOH interface, with practically no structural variations as a function of pH or total gallium concentration. Analysis of the first coordination shell required an anharmonic model indicating a distorted geometry of the GaO6 octahedra, with mean Ga-O distances at 1.96-1.98 angstroms. A method based on the continuous Cauchy wavelet transforms (CCWT) was used to identify backscattering atoms in the higher coordination shells. This analysis indicated predominately Fe backscattering, and the quantitative data fitting resulted in three Ga-Fe paths at 3.05, 3.2, and 3.55 angstroms, which correspond to two edge-sharing and one corner-sharing linkage, respectively. The collective results from EXAFS spectroscopy showed that Ga(III) adsorbs to Fe equivalent sites at the surface alpha-FeOOH as an extension of the rows of Fe octahedra in the bulk structure. This interpretation was further corroborated by a Ga-Fe-Fe multiple scattering path at 6.13 angstroms. The quantitative adsorption and proton data were modeled using a surface complexation formalism based on a 1 pK(a) constant capacitance model. In agreement with the EXAFS results, the model obtained included one predominating surface complex with the stoichiometry [triple bond]FeOGa(OH)2(-0.5) and the stability constant log beta(intr.) = -2.55 +/- 0.04 ([triple bond]FeOH(-0.5) + Ga3+ + 2H2O <--> [triple bond]FeOGa(OH)2(-0.5) + 3H+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号