首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface-modified gold nanorods (Au NRs) with 1,2-dipalmitoyl- sn-glycero-3-phosphothioethanol (DPPTE) were synthesized, and their self-assembled structures on a silicon substrate were observed using a scanning electron microscope (SEM). The Au NR-DPPTE complex formed characteristic one- and two-dimensional self-assemblies induced by intermolecular interactions of surface-anchored lipids via simple drying process. The interparticle distance between neighboring NRs was uniform at around 5.0 nm, which was consistent with the thickness of the lipid bilayer. Furthermore, we observed the anisotropic configurations of the NR complex, preferentially oriented in a lateral or perpendicular fashion, in a two-dimensional assembled structure dependent on the interfacial hydrophilicity or hydrophobicity of the silicon surface.  相似文献   

2.
Recent progress of quantum dot (QD) applications in single-molecule measurements are reviewed in this paper. Bright fluorescence and anti-photobleaching properties of QDs have explored the way to conduct long-time trajectory tracking of transmembrane proteins both in vitro and in vivo. Coupled with diversities of chemical and biochemical modifications of QD surfaces, their application fields are expanding to multidiscipline fields including imaging on the basis of a single molecule. Currently, molecular interactions and conformational changes on the QD surface can be detected at a single-molecule level. These expansions of application fields also involve toxicity problems in cells since most commercially available QDs consist of cadmium selenide or cadmium telluride, which are inherently toxic. For widespread applications of QDs including in vivo and therapeutic use in place of current organic fluorophore, cytotoxicity is discussed as well in this paper. 10.1002/tcr.20128.  相似文献   

3.
Zhang CY  Johnson LW 《The Analyst》2006,131(4):484-488
We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary target DNA through a sandwich hybridization reaction. The DNA hybrids were first caught and assembled on the surface of 605 nm-emitting QDs (605QDs) through specific streptavidin-biotin binding. The 525 nm-emitting QDs (525QDs) were then added to bind the other end of DNA hybrids. The coincidence signals were observed only when the presence of target DNA led to the formation of 605QD/DNA hybrid/525QD complexes. In comparison with a conventional QD-based assay, this assay provided high detection efficiency and short analysis time due to its high hybridization efficiency resulting from the high diffusion coefficient and no limitation of temperature treatment. This QD-based single-molecule coincidence detection offers a simple, rapid and ultra sensitive method for genomic DNA analysis in a homogenous format.  相似文献   

4.
Near-infrared gold-doped CdHgTe quantum dots (QDs) with improved photoluminescence and biocompatibility were developed using an aqueous solution route with l-glutathione and l-cysteine as stabilizers. As-prepared Au:CdHgTe QDs were covalently linked to arginine–glycine–aspartic acid (RGD) peptide, anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), and anti- carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) MAb separately. Three Au:CdHgTe QD bioconjugates (QD800-RGD, QD820-anti-CEACAM1, and QD840-anti-EGFR) were successfully used as probes for in vivo tumor-targeted multispectral fluorescence imaging of xenografts. Fluorescence signals from the QD bioconjugates used to detect three tumor markers were spectrally unmixed, and their co-localization was analyzed. The results indicate that multiple tumor markers could be simultaneously detected by multispectral fluorescence imaging in vivo using QD bioconjugates as probes. This approach has excellent potential as an imaging method for the noninvasive exploration and detection of multiple tumor markers in vivo, thereby substantially aiding the diagnosis of cancer.  相似文献   

5.
Hybrid polymer films consist of quantum dots (QDs) dispersed in a polymer matrix. A key fundamental challenge that is hindering their optimisation in optoelectronic devices such as hybrid solar cells is overcoming uncontrolled aggregation of the QDs. In an effort to direct aggregation, and trigger self-assembly, we added a bilinker ligand (1,2-ethanedithiol) to dispersed PbS QDs in polymer solutions prior to film deposition by spin casting. Turbidity studies of the PbS QD/1,2-ethanedithiol dispersions enabled a relationship to be established between the extent of 1,2-ethanedithiol-triggered QD aggregation and the nominal fractional coverage of the QDs by 1,2-ethanedithiol. The extent of aggregation (and self-assembly) increased with nominal fraction coverage. Above a value of about 1.0 QD aggregation increased substantially. TEM images showed that at low 1,2-ethanedithiol concentrations triggered assembly of network-like QD structures occurred. At high 1,2-ethanedithiol concentrations the QDs self-assembled into more-ordered micrometre-sized crystals. The results suggest that 1,2-ethanedithiol decreases the inter-QD separation in dispersion as a result of rapid ligand exchange and this process results in QD aggregation as well as self-assembly. The assembled QD structures were successfully trapped within polymer films by spin casting of PbS QD/1,2-ethanedithiol dispersions containing added polystyrene or polytriarylamine.  相似文献   

6.
Smart nanohybrids were prepared by conjugation of CrAsH to hydrosoluble and biocompatible quantum dots (QDs). The resulting probes were shown to bind efficiently and selectively to Cys-tagged proteins. The interaction with the protein was detected by an increase of the fluorescence emission of CrAsH. While the latter faded rapidly under continuous excitation, emission of the QD remained unaffected. The persistent fluorescence of the QD should thus allow extended monitoring of the target protein.  相似文献   

7.
With the rise of 2D materials, such as graphene and transition metal dichalcogenides, as viable materials for numerous experimental applications, it becomes more necessary to maintain fine control of their properties. One expedient and efficacious technique to regulate their properties is surface functionalization. In this study, DFT calculations are performed on triangular MoS2 quantum dots (QDs) either partially or completely doped with nanoparticles (NPs) of the noble metals Au, Ag, and Pt. The effects of these dopants on the geometry, electronic properties, magnetic properties, and chemical bonding of the QDs are investigated. The calculations show that the structural stability of the QDs is reduced by Au or Ag dopants, whereas Pt dopants have a contrasting effect. The NPs diminish the metallicity of the QD, the extent of which is contingent on the number of NPs adsorbed on the QD. However, these NPs exert distinctly disparate charge transfer effects—Ag NPs n‐dope the QDs, whereas Au and Pt NPs either n‐ or p‐dope. The molecular electrostatic potential maps of the occupied states show that metallic states are removed from the doping sites. Notwithstanding the decrease of magnetization in all three types of hybrid QD, the distribution of spin density in the Pt‐doped QD is inherently different from that in the other QDs. Bond analyses using the quantum theory of atoms in molecules and the crystal orbital Hamilton population suggest that bonds between the Pt NPs and the QDs are the most covalent and the strongest, followed by the Au?QD bonds, and then Ag?QD bonds. The versatility of these hybrid QDs is further examined by applying an external electric field in the three orthogonal orientations, and comparing their properties with those in the absence of the electric field. There are two primary observations: 1) dopants at the tail, head and tail, and in the fully encased configuration are most effective in modifying the distribution of metallic states if the electric field is absent, and 2) the metallic states in these aforementioned QDs are generally insensitive to the electric field. Conversely, the asymmetric electric effects on the charge transfer in these QDs have to be carefully monitored to allow finer control of their structural stability. This study aptly demonstrates the value of noble metal dopants for manipulating the properties of MoS2 QDs, and shows the versatility of these hybrid QDs as tunable nanodevices. This notably extends the functionality of these nanostructures for applications such as catalysis and nanoelectronics.  相似文献   

8.
Fluorescent quantum dots (QDs), because of their tunable spectral properties, are ideal for simultaneous multiplexed detection in an antibody array format. Despite these advantages, their widespread usage is limited by the costly and tedious conjugation and separation protocol. Herein, we report a simple platform for the direct conjugation and separation of highly luminescent CdSe-ZnS QD-antibody complexes using a genetically engineered polyhistidine tagged elastin-protein L fusion (His-ELP-PL). The principle of immunoassay-ready conjugates was to take advantage of the direct conjugation of QDs via metal coordination with the His tag, the unique temperature-responsive property of ELP, and the high affinity of the antibody-binding protein L domain toward IgGs. Simple separation of the QD- His-ELP-PL-IgG complex was achieved by thermally triggered precipitation without any interference on the QD functionality. The utility of the biofunctionalized OD probes was demonstranted in an antibody array for the detection of carcinoembryonic antigen.  相似文献   

9.
Development of quantum dot (QD) based device components requires controlled integration of QDs into different photonic and electronic materials. In this regard, introduction of methods for regular arrangement of QDs and investigation of properties of QD-based assemblies are important. In the current work we report (1) controlled conjugation of CdSe-ZnS QDs to sidewall-functionalized single-walled carbon nanotube (SWCNT) templates (2) and the effect of conjugation of QDs to SWCNT on the photoluminescence (PL) properties of QDs. We identified that PL intensity and lifetime of QDs are considerably reduced after conjugation to SWCNT. The origin of the quenching of the PL intensity and lifetime was discussed in terms of F?rster resonance energy transfer (FRET). FRET involves nonradiative transfer of energy from a photoexcited QD (energy donor) to a nearby SWCNT (energy acceptor) in the ground state. This was examined by varying the density of QDs on SWCNT and conjugating smaller and bigger QDs to the same SWCNT. We estimated the FRET efficiency in QD-SWCNT conjugates from the quenching of the PL intensity and lifetime and identified that FRET is independent of the density and type of QDs on SWCNT but inherent to QD-SWCNT conjugates.  相似文献   

10.
Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39 degrees as compared to 21 degrees for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon-hydrocarbon interactions in the center of the bilayer due to chain staggering.  相似文献   

11.
Although quantum dot (QD)‐based room temperature phosphorescence (RTP) probes are promising for practical applications in complex matrixes such as environmental, food and biological samples, current QD‐based‐RTP probes are not only quite limited but also exclusively based on the RTP quenching mechanism. Here we report an ascorbic acid (AA) induced phosphorescence enhancement of sodium tripolyphosphate‐capped Mn‐doped ZnS QDs, and its application for turn‐on RTP detection. The chelating ability allows AA to extract the Mn and Zn from the surface of the QDs and to generate more holes which are subsequently trapped by Mn2+, while the reducing property permits AA to reduce Mn3+ to Mn2+ in the excited state, thereby enhancing the excitation and orange emission of the QDs. The enhanced RTP intensity of the QDs increases linearly with the concentration of AA in the range of 0.05–0.8 μM . Thus, a QD‐based RTP probe for AA is developed. The proposed QD‐based turn‐on RTP probe avoids tedious sample pretreatment, and offers good sensitivity and selectivity for AA in the presence of the main relevant metal ions and other molecules in biological fluids. The limit of detection (3s) of the developed method is 9 nM AA, and the relative standard deviation is 4.8 % for 11 replicate detections of 0.1 μM AA. The developed method is successfully applied to the analysis of real samples of human urine and plasma for AA with quantitative recoveries from 96 to 105 %.  相似文献   

12.
Due to their unique optical and electronic properties, quantum dots (QDs) have been widely used in a variety of biosensors for sensitive detection of biomarkers and small molecules. However, single QD exhibits dynamic fluctuation of fluorescence intensity (i.e., blinking) with the transition between on and off states, which adversely influences the development of QD-based optical biosensors. Therefore, the methods for efficient evaluation of on-state QD are especially important and highly desirable. In this paper, a novel and unique approach based on single-molecule two-color coincidence detection is developed to simply and accurately evaluate the on-state QDs in a microfluidic flow. Our results demonstrate that improved QDs in the on state are detected in a microfluidic flow in comparison with that in the Brownian motion state, thus paving the way to the development of single QD-based biosensors for sensitive detection of low-abundance biomolecules. This single-molecule two-color coincidence detection has been applied for the homegeneous detection of nucleic acids in a microfluidic flow with the detection sensitivity of 5.0 fM.  相似文献   

13.
Nanostructures of colloidal CdSe/ZnS core/shell quantum dots (QDs) surrounded by a discrete number of Au nanoparticles were generated via DNA hybridization and purified by gel electrophoresis. Statistics from TEM analysis showed a high yield of designed structures. The distance between Au particles and QD, the number of Au around the central QD, and the size of Au and QD can be adjusted. Rationally designed structures such as these hold great promise for researching the physical interactions between semiconductor and Au nanoparticles and for developing more efficient nanoprobes.  相似文献   

14.
The absorption and photoluminescence (PL) properties of silicon quantum dots (QDs) are greatly influenced by their size and surface chemistry. Herein, we examined the optical properties of three Si QDs with increasing σ–π conjugation length: octyl‐, (trimethylsilyl)vinyl‐, and 2‐phenylvinyl‐capped Si QDs. The PL photon energy obtained from as‐prepared samples decreased by 0.1–0.3 eV, while the PL excitation (PLE) extended from 360 nm (octyl‐capped Si QDs) to 400 nm (2‐phenylvinyl‐capped Si QDs). A vibrational PL feature was observed in all samples with an energy separation of about 0.192±0.013 eV, which was explained based on electron–phonon coupling. After soft oxidization through drying, all samples showed blue PL with maxima at approximately 410 nm. A similar high‐energy peak was observed with the bare Si QD sample. The changes in the optical properties of Si QDs were mainly explained by the formation of additional states arising from the strong σ–π conjugation and QD oxidation.  相似文献   

15.
An antioxidative liposome catalysis that mimics both superoxide dismutase (SOD) and peroxidase (POD) activities has been developed by using the liposomes modified with lipophilic Mn-(5,10,15,20-tetrakis[1-hexadecylpyridium-4-yl]-21H,23H-porphyrin) (Mn-HPyP). The SOD- and POD-like activities of the Mn-HPyP-modified liposome were first investigated by varying the type of phospholipid, such as 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Higher SOD-like activity was obtained in the case of DLPC and DMPC liposomes, in which the ligands were well-dispersed on the membrane in the liquid crystalline phase. The POD-like activity was maximal in the case of DMPC liposome, in which the Mn-HPyP complex was appropriately clustered on the membrane in the gel phase. On the basis of the above results, the co-induction of the SOD and POD activities to eliminate the superoxide and also hydrogen peroxide as a one-pot reaction was finally performed by using the Mn-HPyP-modified DMPC liposome, resulting in an increase in the efficiency of the elimination of both superoxide and hydrogen peroxide.  相似文献   

16.
Semiconductor quantum dots (QDs) are very important luminescent nanomaterials with a wide range of potential applications. Currently, QDs as labeling probes are broadly used in bioassays, including immunoassay, DNA hybridization, and bioimaging, due to their excellent physical and chemical properties, such as broad excitation spectra, narrow and size‐dependent emission profiles, long fluorescence life time, and good photostability. The characterization of QDs and their conjugates is crucial for their wide bioapplications. CE has become a powerful tool for the separation and characterization of QDs and their conjugates. In this review, some CE separation models of QDs are first introduced, mainly including CZE, CGE, MEKC, and ITP. And then, some key applications, such as the measurements of size, surface charge, and concentration of QDs and the characterization of QDs conjugates (e.g. QD–protein, QD–DNA, QD–small molecule), are also described. Finally, future perspectives are discussed.  相似文献   

17.
Direct ligand exchange kinetics between hydrophilic molecules and quantum dots(QDs) was investigated. Meanwhile, pyrene was exploited as probe to detect the efficiency of the ligand exchange reaction between octadecylamine-coated QDs(ODA-QDs) and different ligands[ligand 1: NH2G3-OH, ligand 2: G4.5-PEG5-FA5, ligand 3: (COOH)2G3-OH or ligand 4: G4.5-PEG1-FA1]. It was indicated that water-soluble QDs exhibit the same fluorescence and absorption spectra as ODA-QDs when they were dissolved in chloroform. Furthermore, the cellular experiments demonstrated that the folic acid(FA) targeting poly(amidoamine)(PAMAM) modified QD conjugates could be used as molecular targeting sensing systems for nanoparticle probes.  相似文献   

18.
Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.  相似文献   

19.
The nano-organized LipoParticle assemblies, consisting of polymer particles coated with lipid layers, are investigated with the aim of evidencing the impact of the particle chemical nature on their physicochemical behavior. To this end, these colloidal systems are elaborated from anionic submicrometer poly(styrene) (P(St)) or poly(lactic acid) (PLA) particles, and lipid mixtures composed of zwitterionic 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and cationic 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP). As revealed by various experimental techniques, such as quasielastic light scattering, zeta potential measurements, transmission electron microscopy, and 1H NMR spectroscopy, the features of both LipoParticle systems are similar when cationic lipid formulations (DPPC/DPTAP mixtures) are used. This result emphasizes the major role of electrostatic interactions as driving forces in the assembly elaboration process. Conversely, the assemblies prepared only with the zwitterionic DPPC lipid are strongly dependent on the particle chemical nature. The structural characteristics of the assemblies based on PLA particles are not controlled and correspond to aggregates, contrary to P(St) particles. To understand this specific phenomenon, and to consequently improve the final organization of these assemblies which are potentially of great interest in biotechnology and biomedicine, numerous investigations are carried out such as the studies of the impact of the ionic strength and the pH of the preparation media, as well as the presence of ethanol (involved in the PLA particle synthesis) or the mean size of the lipid vesicles. From the resulting data and according to the nature of spherical solid support, hydrophobic effects, hydrogen bonds, or dipole-dipole interactions would also appear to influence the LipoParticle elaboration in the case of zwitterionic lipid formulation.  相似文献   

20.
Nucleic-acid-functionalized CdSe/ZnS quantum dots (QDs) were hybridized with the complementary Texas-Red-functionalized nucleic acid. The hybridization was monitored by following the fluorescence resonance energy transfer from the QDs to the dye units. Treatment of the QD/dye DNA duplex structure with DNase I resulted in the cleavage of the DNA and the recovery of the fluorescence properties of the CdSe/ZnS QDs. The luminescence properties of the QDs were, however, only partially recovered due to the nonspecific adsorption of the dye onto the QDs. Similarly, nucleic-acid-functionalized Au nanoparticles (Au NPs) were hybridized with the complementary Texas-Red-labeled nucleic acid. The hybridization was followed by the fluorescence quenching of the dye by the Au NPs. Treatment of the Au NP/dye DNA duplex with DNase I resulted in the cleavage of the DNA and the partial recovery of the dye fluorescence. The incomplete recovery of the dye fluorescence originated from the nonspecific binding of the dye units to the Au NPs. The nonspecific binding of the dye to the CdSe/ZnS QDs and the Au NPs is attributed to nonprotected surface vacancies in the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号