首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This paper surveys recent applications and advances of the Constraint Programming-based Column Generation framework, where the master subproblem is solved by traditional OR techniques, while the pricing subproblem is solved by Constraint Programming. This framework has been introduced to solve crew assignment problems, where complex regulations make the pricing subproblem demanding for traditional techniques, and then it has been applied to other contexts. The main benefits of using Constraint Programming are the expressiveness of its modeling language and the flexibility of its solvers. Recently, the Constraint Programming-based Column Generation framework has been applied to many other problems, ranging from classical combinatorial problems such as graph coloring and two dimensional bin packing, to application oriented problems, such as airline planning and resource allocation in wireless ad-hoc networks.  相似文献   

2.
Constraint Programming Based Column Generation for Crew Assignment   总被引:5,自引:0,他引:5  
Airline crew assignment problems are large-scale optimization problems which can be adequately solved by column generation. The subproblem is typically a so-called constrained shortest path problem and solved by dynamic programming. However, complex airline regulations arising frequently in European airlines cannot be expressed entirely in this framework and limit the use of pure column generation. In this paper, we formulate the subproblem as a constraint satisfaction problem, thus gaining high expressiveness. Each airline regulation is encoded by one or several constraints. An additional constraint which encapsulates a shortest path algorithm for generating columns with negative reduced costs is introduced. This constraint reduces the search space of the subproblem significantly. Resulting domain reductions are propagated to the other constraints which additionally reduces the search space. Numerical results based on data of a large European airline are presented and demonstrate the potential of our approach.  相似文献   

3.
The multiple container loading cost minimization problem (MCLCMP) is a practical and useful problem in the transportation industry, where products of various dimensions are to be loaded into containers of various sizes so as to minimize the total shipping cost. The MCLCMP can be naturally formulated as a set cover problem and solved using column generation techniques, which is a popular method for handling huge numbers of variables. However, the direct application of column generation is not effective because feasible solutions to the pricing subproblem is required, which for the MCLCMP is NP-hard. We show that efficiency can be greatly improved by generating prototypes that approximate feasible solutions to the pricing problem rather than actual columns. For many hard combinatorial problems, the subproblem in column generation based algorithms is NP-hard; if suitable prototypes can be quickly generated that approximate feasible solutions, then our strategy can also be applied to speed up these algorithms.  相似文献   

4.
This paper presents constraint programming (CP) as a natural formalism for modelling problems, and as a flexible platform for solving them. CP has a range of techniques for handling constraints including several forms of propagation and tailored algorithms for global constraints. It also allows linear programming to be combined with propagation and novel and varied search techniques which can be easily expressed in CP. The paper describes how CP can be used to exploit linear programming within different kinds of hybrid algorithm. In particular it can enhance techniques such as Lagrangian relaxation, Benders decomposition and column generation.  相似文献   

5.
In this paper, we consider the duty scheduling of sensor activities in wireless sensor networks to maximize the lifetime. We address full target coverage problems contemplating sensors used for sensing data and transmit it to the base station through multi-hop communication as well as sensors used only for communication purposes. Subsets of sensors (also called covers) are generated. Those covers are able to satisfy the coverage requirements as well as the connection to the base station. Thus, maximum lifetime can be obtained by identifying the optimal covers and allocate them an operation time. The problem is solved through a column generation approach decomposed in a master problem used to allocate the optimal time interval during which covers are used and in a pricing subproblem used to identify the covers leading to maximum lifetime. Additionally, Branch-and-Cut based on Benders’ decomposition and constraint programming approaches are used to solve the pricing subproblem. The approach is tested on randomly generated instances. The computational results demonstrate the efficiency of the proposed approach to solve the maximum network lifetime problem in wireless sensor networks with up to 500 sensors.  相似文献   

6.
Developing a branching scheme that is compatible with the column generation procedure can be challenging. Application specific and generic schemes have been proposed in the literature, but they have their drawbacks. One generic scheme is to implement standard branching in the space of the compact formulation to which the Dantzig-Wolfe reformulation was applied. However, in the presence of multiple identical subsystems, the mapping to the original variable space typically induces symmetries. An alternative, in an application specific context, can be to expand the compact formulation to offer a wider choice of branching variables. Other existing generic schemes for use in branch-and-price imply modifications to the pricing problem. This is a concern because the pricing oracle on which the method relies might become obsolete beyond the root node. This paper presents a generic branching scheme in which the pricing oracle of the root node remains of use after branching (assuming that the pricing oracle can handle bounds on the subproblem variables). The scheme does not require the use of an extended formulation of the original problem. It proceeds by recursively partitioning the subproblem solution set. Branching constraints are enforced in the pricing problem instead of being dualized via Lagrangian relaxation, and the pricing problem is solved by a limited number of calls to the pricing oracle. This generic scheme builds on previously proposed approaches and unifies them. We illustrate its use on the cutting stock and bin packing problems. This is the first branch-and-price algorithm capable of solving such problems to integrality without modifying the subproblem or expanding its variable space.  相似文献   

7.
When vehicle routing problems with additional constraints, such as capacity or time windows, are solved via column generation and branch-and-price, it is common that the pricing subproblem requires the computation of a minimum cost constrained path on a graph with costs on the arcs and prizes on the vertices. A common solution technique for this problem is dynamic programming. In this paper we illustrate how the basic dynamic programming algorithm can be improved by bounded bi-directional search and we experimentally evaluate the effectiveness of the enhancement proposed. We consider as benchmark problems the elementary shortest path problems arising as pricing subproblems in branch-and-price algorithms for the capacitated vehicle routing problem, the vehicle routing problem with distribution and collection and the capacitated vehicle routing problem with time windows.  相似文献   

8.
The Dantzig-Wolfe reformulation principle is presented based on the concept of generating sets. The use of generating sets allows for an easy extension to mixed integer programming. Moreover, it provides a unifying framework for viewing various column generation practices, such as relaxing or tightening the column generation subproblem and introducing stabilization techniques.  相似文献   

9.
A Hybrid Approach to Scheduling with Earliness and Tardiness Costs   总被引:9,自引:0,他引:9  
A hybrid technique using constraint programming and linear programming is applied to the problem of scheduling with earliness and tardiness costs. The linear model maintains a set of relaxed optimal start times which are used to guide the constraint programming search heuristic. In addition, the constraint programming problem model employs the strong constraint propagation techniques responsible for many of the advances in constraint programming for scheduling in the past few years. Empirical results validate our approach and show, in particular, that creating and solving a subproblem containing only the activities with direct impact on the cost function and then using this solution in the main search, significantly increases the number of problems that can be solved to optimality while significantly decreasing the search time.  相似文献   

10.
Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.   相似文献   

11.
Constraint programming based column generation is a hybrid optimization framework recently proposed (Junker et al., 1999) that uses constraint programming to solve column generation subproblems. In the past, this framework has been used to solve scheduling problems where the associated graph is naturally acyclic and has done so very efficiently. This paper attempts to solve problems whose graph is cyclic by nature, such as routing problems, by solving the elementary shortest path problem with constraint programming. We also introduce new redundant constraints which can be useful in the general framework. The experimental results are comparable to those of the similar method in the literature (Desrochers, Desrosiers, and Solomon, 1992) but the proposed method yields a much more flexible approach.  相似文献   

12.
This paper considers the Single Source Capacitated Plant Location Problem (SSCPLP). We propose an exact algorithm in which a column generation procedure for finding upper and lower bounds is incorporated within a Branch-and-Price framework. The bounding procedure exploits the structure of the problem by means of an iterative approach. At each iteration, a two-level optimization problem is considered. The two levels correspond with the two decisions to be taken: first, the selection of a subset of plants to be opened and then, the allocation of clients within the subset of open plants. The second level subproblem is solved using column generation. The algorithm has been tested with different sets of test problems and the obtained results are satisfactory.  相似文献   

13.
Column generation has become a powerful tool in solving large scale integer programs. It is well known that most of the often reported compatibility issues between pricing subproblem and branching rule disappear when branching decisions are based on imposing constraints on the subproblem's variables. This can be generalized to branching on variables of a so-called compact formulation. We constructively show that such a formulation always exists under mild assumptions. It has a block diagonal structure with identical subproblems, each of which contributes only one column in an integer solution. This construction has an interpretation as reversing a Dantzig-Wolfe decomposition. Our proposal opens the way for the development of branching rules adapted to the subproblem's structure and to the linking constraints.  相似文献   

14.
15.
We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the traveling salesman problem with time windows, where additionally generalized precedence constraints (minimal time-lags) have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all traveling and waiting times is minimized.We calculate lower bounds for this problem using constraint propagation techniques and a linear programming formulation which is solved by a column generation procedure. Computational results are presented for test data arising from job-shop instances with a single transport robot and some modified traveling salesman instances.  相似文献   

16.
We investigate the vehicle routing with demand allocation problem where the decision-maker jointly optimizes the location of delivery sites, the assignment of customers to (preferably convenient) delivery sites, and the routing of vehicles operated from a central depot to serve customers at their designated sites. We propose an effective branch-and-price (B&P) algorithm that is demonstrated to greatly outperform the use of commercial branch-and-bound/cut solvers such as CPLEX. Central to the efficacy of the proposed B&P algorithm is the development of a specialized dynamic programming procedure that extends works on elementary shortest path problems with resource constraints in order to solve the more complex column generation pricing subproblem. Our computational study demonstrates the efficacy of the proposed approach using a set of 60 problem instances. Moreover, the proposed methodology has the merit of providing optimal solutions in run times that are significantly shorter than those reported for decomposition-based heuristics in the literature.  相似文献   

17.
This paper introduces a new type of constraints, related to schedule synchronization, in the problem formulation of aircraft fleet assignment and routing problems and it proposes an optimal solution approach. This approach is based on Dantzig–Wolfe decomposition/column generation. The resulting master problem consists of flight covering constraints, as in usual applications, and of schedule synchronization constraints. The corresponding subproblem is a shortest path problem with time windows and linear costs on the time variables and it is solved by an optimal dynamic programming algorithm. This column generation procedure is embedded into a branch and bound scheme to obtain integer solutions. A dedicated branching scheme was devised in this paper where the branching decisions are imposed on the time variables. Computational experiments were conducted using weekly fleet routing and scheduling problem data coming from an European airline. The test problems are solved to optimality. A detailed result analysis highlights the advantages of this approach: an extremely short subproblem solution time and, after several improvements, a very efficient master problem solution time.  相似文献   

18.
This article introduces a new exact algorithm for the capacitated vehicle routing problem with stochastic demands (CVRPSD). The CVRPSD can be formulated as a set partitioning problem and it is shown that the associated column generation subproblem can be solved using a dynamic programming scheme. Computational experiments show promising results.  相似文献   

19.
This paper considers a stochastic version of the linear continuous type knapsack problem in which the cost coefficients are random variables. The problem is to find an optimal solution and an optimal probability level of the chance constraint. This problem P0 is first transformed into a deterministic equivalent problem P. Then a subproblem with a positive parameter is introduced and a close relation between P and its subproblem is shown. Further, an auxiliary problem of the subproblem is introduced and a direct relation between P and the auxiliary problem is derived through a relation connecting the subproblem and its auxiliary problem. Fully utilizing these relations, an efficient algorithm is proposed that finds an optimal solution of P in at most O(n4) computational time where n is the number of decision variables. Finally, further research problems are discussed.  相似文献   

20.
This paper discusses optimization problems with nonlinear inequality constraints and presents a new sequential quadratically-constrained quadratic programming (NSQCQP) method of feasible directions for solving such problems. At each iteration. the NSQCQP method solves only one subproblem which consists of a convex quadratic objective function, convex quadratic equality constraints, as well as a perturbation variable and yields a feasible direction of descent (improved direction). The following results on the NSQCQP are obtained: the subproblem solved at each iteration is feasible and solvable: the NSQCQP is globally convergent under the Mangasarian-Fromovitz constraint qualification (MFCQ); the improved direction can avoid the Maratos effect without the assumption of strict complementarity; the NSQCQP is superlinearly and quasiquadratically convergent under some weak assumptions without thestrict complementarity assumption and the linear independence constraint qualification (LICQ). Research supported by the National Natural Science Foundation of China Project 10261001 and Guangxi Science Foundation Projects 0236001 and 0249003. The author thanks two anonymous referees for valuable comments and suggestions on the original version of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号