首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we obtain strong approximation theorems for a single server queue withr priority classes of customers and a head-of-the-line-first discipline. By using priority queues of preemptive-resume discipline as modified systems, we prove strong approximation theorems for the number of customers of each priority in the system at timet, the number of customers of each priority that have departed in the interval [0,t], the work load in service time of each priority class facing the server at timet, and the accumulated time in [0,t] during which there are neither customers of a given priority class nor customers of priority higher than that in the system.Research supported by the National Natural Science Foundation of China.  相似文献   

2.
In a queueing system with preemptive loss priority discipline, customers disappear from the system immediately when their service is preempted by the arrival of another customer with higher priority. Such a system can model a case in which old requests of low priority are not worthy of deferred service. This paper is concerned with preemptive loss priority queues in which customers of each priority class arrive in a Poisson process and have general service time distribution. The strict preemption in the existing model is extended by allowing the preemption distance parameterd such that arriving customers of only class 1 throughp — d can preempt the service of a customer of classp. We obtain closed-form expressions for the mean waiting time, sojourn time, and queue size from their distributions for each class, together with numerical examples. We also consider similar systems with server vacations.  相似文献   

3.
We study a BMAP/>SM/1 queue with batch Markov arrival process input and semi‐Markov service. Service times may depend on arrival phase states, that is, there are many types of arrivals which have different service time distributions. The service process is a heterogeneous Markov renewal process, and so our model necessarily includes known models. At first, we consider the first passage time from level {κ+1} (the set of the states that the number of customers in the system is κ+1) to level {κ} when a batch arrival occurs at time 0 and then a customer service included in that batch simultaneously starts. The service descipline is considered as a LIFO (Last‐In First‐Out) with preemption. This discipline has the fundamental role for the analysis of the first passage time. Using this first passage time distribution, the busy period length distribution can be obtained. The busy period remains unaltered in any service disciplines if they are work‐conserving. Next, we analyze the stationary workload distribution (the stationary virtual waiting time distribution). The workload as well as the busy period remain unaltered in any service disciplines if they are work‐conserving. Based on this fact, we derive the Laplace–Stieltjes transform for the stationary distribution of the actual waiting time under a FIFO discipline. In addition, we refer to the Laplace–Stieltjes transforms for the distributions of the actual waiting times of the individual types of customers. Using the relationship between the stationary waiting time distribution and the stationary distribution of the number of customers in the system at departure epochs, we derive the generating function for the stationary joint distribution of the numbers of different types of customers at departures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Choi  Bong Dae  Kim  Bara  Chung  Jinmin 《Queueing Systems》2001,38(1):49-66
We introduce a simple approach for the analysis of the M/M/c queues with a single class of customers and constant impatience time by finding simple Markov processes (see (2.1) and (2.15) below), and then by applying this approach we analyze the M/M/1 queues with two classes of customers in which class 1 customers have impatience of constant duration, and class 2 customers have no impatience and lower priority than class 1 customers.  相似文献   

5.
On queueing with customer impatience until the beginning of service   总被引:8,自引:0,他引:8  
Movaghar  Ali 《Queueing Systems》1998,29(2-4):337-350
We study queueing systems where customers have strict deadlines until the beginning of their service. An analytic method is given for the analysis of a class of such queues, namely, models. These are queues with state-dependent Poisson arrival process, exponential service times, multiple servers, FCFS service discipline, and general customer impatience. The state of the system is viewed to be the number of customers in the system. The principal measure of performance is the probability measure induced by the offered waiting time. Other measures of interest are the probability of missing deadline and the probability of blocking. Closed-form solutions are derived for the steady-state probabilities of the state process and some important modeling variables and parameters. The efficacy of our method is illustrated through a numerical example. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Consider an M/G/c queue with homogeneous servers and service time distribution F. It is shown that an approximation of the service time distribution F by stochastically smaller distributions, say F n , leads to an approximation of the stationary distribution π of the original M/G/c queue by the stationary distributions π n of the M/G/c queues with service time distributions F n . Here all approximations are in weak convergence. The argument is based on a representation of M/G/c queues in terms of piecewise deterministic Markov processes as well as some coupling methods.   相似文献   

7.
A diffusion approximation is developed for general multiserver queues with finite waiting spaces, which are typical models of manufacturing systems as well as computer and communication systems. The model is the standard GI/G/s/s + r queue with s identical servers in parallel, r extra waiting spaces, and the first-come, first-served discipline. The main focus is on the steady-state distribution of the number of customers in the system. The process of the number of customers is approximated by a time-homogeneous diffusion process on a closed interval in the nonnegative real line. A conservation law plus some heuristics standing on solid theoretical ground generate approximation formulas for the steady-state distribution and other congestion measures. These formulas are consistent with the exact results for the M/G/s/s and M/M/s/s + r queues. The accuracy of approximations for principal congestion measures are numerically examined for some particular cases.  相似文献   

8.
A call center is a facility for delivering telephone service, both incoming and outgoing. This paper addresses optimal staffing of call centers, modeled as M/G/n queues whose offered traffic consists of multiple customer streams, each with an individual priority, arrival rate, service distribution and grade of service (GoS) stated in terms of equilibrium tail waiting time probabilities or mean waiting times. The paper proposes a methodology for deriving the approximate minimal number of servers that suffices to guarantee the prescribed GoS of all customer streams. The methodology is based on an analytic approximation, called the Scaling-Erlang (SE) approximation, which maps the M/G/n queue to an approximating, suitably scaled M/G/1 queue, for which waiting time statistics are available via the Pollaczek-Khintchine formula in terms of Laplace transforms. The SE approximation is then generalized to M/G/n queues with multiple types of customers and non-preemptive priorities, yielding the Priority Scaling-Erlang (PSE) approximation. A simple goal-seeking search, utilizing SE/PSE approximations, is presented for the optimal staffing level, subject to GoS constraints. The efficacy of the methodology is demonstrated by comparing the number of servers estimated via the PSE approximation to their counterparts obtained by simulation. A number of case studies confirm that the SE/PSE approximations yield optimal staffing results in excellent agreement with simulation, but at a fraction of simulation time and space.  相似文献   

9.
A regularly preemptive model D,MAP/D 1,D 2/1 is studied. Priority customers have constant inter-arrival times and constant service times. On the other hand, ordinary customers' arrivals follow a Markovian Arrival Process (MAP) with constant service times. Although this model can be formulated by using the piecewise Markov process, there remain some difficult problems on numerical calculations. In order to solve these problems, a novel approximation model MAP/MR/1 with Markov renewal services is proposed. These two queueing processes become different due to the existence of idle periods. Thus, a MAP/MR/1 queue with a general boundary condition is introduced. It is a model with the exceptional first service in each busy period. In particular, two special models are studied: one is a warm-up queue and the other is a cool-down queue. It can be proved that the waiting time of ordinary customers for the regular preemption model is stochastically smaller than the waiting time of the former model. On the other hand, it is stochastically larger than the waiting time of the latter model.  相似文献   

10.
In this paper we consider a single-server polling system with switch-over times. We introduce a new service discipline, mixed gated/exhaustive service, that can be used for queues with two types of customers: high and low priority customers. At the beginning of a visit of the server to such a queue, a gate is set behind all customers. High priority customers receive priority in the sense that they are always served before any low priority customers. But high priority customers have a second advantage over low priority customers. Low priority customers are served according to the gated service discipline, i.e. only customers standing in front of the gate are served during this visit. In contrast, high priority customers arriving during the visit period of the queue are allowed to pass the gate and all low priority customers before the gate. We study the cycle time distribution, the waiting time distributions for each customer type, the joint queue length distribution of all priority classes at all queues at polling epochs, and the steady-state marginal queue length distributions for each customer type. Through numerical examples we illustrate that the mixed gated/exhaustive service discipline can significantly decrease waiting times of high priority jobs. In many cases there is a minimal negative impact on the waiting times of low priority customers but, remarkably, it turns out that in polling systems with larger switch-over times there can be even a positive impact on the waiting times of low priority customers.  相似文献   

11.
We consider an open queueing network consisting of two queues with Poisson arrivals and exponential service times and having some overflow capability from the first to the second queue. Each queue is equipped with a finite number of servers and a waiting room with finite or infinite capacity. Arriving customers may be blocked at one of the queues depending on whether all servers and/or waiting positions are occupied. Blocked customers from the first queue can overflow to the second queue according to specific overflow routines. Using a separation method for the balance equations of the two-dimensional server and waiting room demand process, we reduce the dimension of the problem of solving these balance equations substantially. We extend the existing results in the literature in three directions. Firstly, we allow different service rates at the two queues. Secondly, the overflow stream is weighted with a parameter p ∈ [0,1], i.e., an arriving customer who is blocked and overflows, joins the overflow queue with probability p and leaves the system with probability 1 − p. Thirdly, we consider several new blocking and overflow routines. An erratum to this article can be found at  相似文献   

12.
We consider a queueing system in which a single server attends to N priority classes of customers. Upon arrival to the system, a customer begins to accumulate priority linearly at a rate which is distinct to the class to which it belongs. Customers with greater accumulated priority levels are given preferential treatment in the sense that at every service selection instant, the customer with the greatest accumulated priority level is selected next for servicing. Furthermore, the system is preemptive so that the servicing of a customer is interrupted for customers with greater accumulated priority levels. The main objective of the paper is to characterize the waiting time distributions of each class. Numerical examples are also provided which exemplify the true benefit of incorporating an accumulating prioritization structure, namely the ability to control waiting times.  相似文献   

13.
We consider the M/M/s/K retrial queues in which a customer who is blocked to enter the service facility may leave the system with a probability that depends on the number of attempts of the customer to enter the service facility. Approximation formulae for the distributions of the number of customers in service facility, waiting time in the system and the number of retrials made by a customer during its waiting time are derived. Approximation results are compared with the simulation.  相似文献   

14.
In this paper, we analyse a service system which consists of several queues (stations) polled by a single server in a cyclic order with arbitrary switchover times. Customers from several priority classes arrive into each of the queues according to independent Poisson processes and require arbitrarily distributed service times. We consider the system under various priority service disciplines: head-of-the-line priority limited to one and semi-exhaustive, head-of-the-line priority limited to one with background customers, and global priority limited to one. For the first two disciplines we derive a pseudo conservation law. For the third discipline, we show how to obtain the expected waiting time of a customer from any given priority class. For the last discipline we find the expected waiting time of a customer from the highest priority class. The principal tool for our analysis is the stochastic decomposition law for a single server system with vacations.  相似文献   

15.
Brandt  Andreas  Brandt  Manfred 《Queueing Systems》1999,32(4):363-381
We consider a single server system consisting of n queues with different types of customers and k permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). By means of Loynes’ monotonicity method a stationary work load process is constructed and using sample path analysis general stability conditions are derived. They allow to decide which queues are stable and, moreover, to compute the fraction of processor capacity devoted to the permanent customers. In case of a stable system the constructed stationary state process is the only one and for any initial state the system converges pathwise to the steady state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
This paper studies a new type of multi-class priority queues with semi-exhaustive service and server vacations, which operates as follows: A single server continues serving messages in queuen until the number of messages decreases toone less than that found upon the server's last arrival at queuen, where 1nN. In succession, messages of the highest class present in the system, if any, will be served according to this semi-exhaustive service. Applying the delay cycle analysis and introducing a super-message composed of messages served in a busy period, we derive explicitly the Laplace-Stieltjes transforms (LSTs) and the first two moments of the message waiting time distributions for each class in the M/G/1-type priority queues with multiple and single vacations. We also derive a conversion relationship between the LSTs for waiting times in the multiple and single vacation models.  相似文献   

17.
The dual queue consists of two queues, called the primary queue and the secondary queue. There is a single server in the primary queue but the secondary queue has no service facility and only serves as a holding queue for the overloaded primary queue. The dual queue has the additional feature of a priority scheme to help reduce congestion. Two classes of customers, class 1 and 2, arrive to the dual queue as two independent Poisson processes and the single server in the primary queue dispenses an exponentially distributed service time at the rate which is dependent on the customer’s class. The service discipline is preemptive priority with priority given to class 1 over class 2 customers. In this paper, we use matrix-analytic method to construct the infinitesimal generator of the system and also to provide a detailed analysis of the expected waiting time of each class of customers in both queues.  相似文献   

18.
We are interested in queues in which customers of different classes arrive to a service facility, and where performance targets are specified for each class. The manager of such a queue has the task of implementing a queueing discipline that results in the performance targets for all classes being met simultaneously. For the case where the performance targets are specified in terms of ratios of mean waiting times, as long ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets are achieved. He proposed that customers accumulate priority as a linear function of their time in the queue: the higher the urgency of the customer’s class, the greater the rate at which that customer accumulates priority. When the server becomes free, the customer (if any) with the highest accumulated priority at that time point is the one that is selected for service. Kleinrock called such a queue a time-dependent priority queue, but we shall refer to it as the accumulating priority queue. Recognising that the performance of many queues, particularly in the healthcare and human services sectors, is specified in terms of tails of waiting time distributions for customers of different classes, we revisit the accumulating priority queue to derive its waiting time distributions, rather than just the mean waiting times. We believe that some elements of our analysis, particularly the process that we call the maximum priority process, are of mathematical interest in their own right.  相似文献   

19.
In this paper, we study an M/G/1 multi-queueing system consisting ofM finite capacity queues, at which customers arrive according to independent Poisson processes. The customers require service times according to a queue-dependent general distribution. Each queue has a different priority. The queues are attended by a single server according to their priority and are served in a non-preemptive way. If there are no customers present, the server takes repeated vacations. The length of each vacation is a random variable with a general distribution function. We derive steady state formulas for the queue length distribution and the Laplace transform of the queueing time distribution for each queue.  相似文献   

20.
Abstract

Customers arriving according to a Markovian arrival process are served at a c server facility. Waiting customers generate into priority while waiting in the system (self-generation of priorities), at a constant rate γ; such a customer is immediately taken for service, if at least one of the servers is free. Else it waits at a waiting space of capacity c exclusively for priority generated customers, provided there is vacancy. A customer in service is not preempted to accommodate a priority generated customer. The service times of ordinary and priority generated customers follow distinct PH-distributions. It is proved that the system is always stable. We provide a numerical procedure to compute the optimal number of servers to be employed to minimize the loss to the system. Several performance measures are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号