首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most widely-used inorganic pigments of Byzantine and post-Byzantine hagiography are earth pigments called ochres such as, red and yellow ochres, limonite, goethite, raw and burnt sienna, caput mortuum and hematite. The present experimental work proposes a technique of differentiation that allows one to distinguish among all the different kinds of iron oxides, thereby providing a better understanding of the painting technique used on portable icons and wall paintings. The ratios between the main spectroscopic peaks, attributable to the major components usually present in ochres, were calculated and compared, one against the another, from the spectra obtained through micro-Raman spectroscopy. Elementary composition is also revealed through a scanning electron microscopy (SEM) analysis. The possibility for detailed study on a particular Byzantine ochre palette can thus be performed based on the small differences in its nature and composition. These differences can first be observed and then measured among all of the natural earth pigments, through microRaman and microFTIR spectroscopies.  相似文献   

2.
The analysis of about 60 samples of wall paintings was carried out using different chemicophysical techniques: optical microscopy, scanning electron microscopy (SEM) equipped with an EDS microanalysis detector, X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The identified pigments were cinnabar, hematite, red ochre, celadonite, cuprorivaite (Egyptian blue), yellow ochre, goethite and carbon. Only in one case some lead white was found instead. In general, the mortar preparation did not correspond to the complex structure suggested by Vitruvius (De Architectura), but it generally showed a porous layer, with crushed grains under the pigment layer. In certain cases two superposed pigment layers were found: yellow superimposed on both red and pink, black on pink, green on black.  相似文献   

3.
Wall paintings spanning two millennia of Cretan painting history and technology were analysed in an effort to determine similarities and evolutions of painting materials and technology. A multi-technique approach was employed that combined the use of (a) laser-induced breakdown spectroscopy (LIBS) and Raman microspectroscopy, based on mobile instrumentation, appropriate for rapid, routine-level object characterization, and (b) non-destructive X-ray diffractometry (XRD), performed directly on the wall painting fragment, which provides detailed information on the minerals constituting the paint. Elemental analysis data obtained through LIBS were compared with molecular and crystal structure information from Raman spectroscopy and XRD. Cross-sections from selected samples were also investigated by means of optical microscopy and scanning electron microscopy coupled to micro-probe analysis and X-ray mapping that enabled identification of several mineral components of the paint confirming the results of the XRD analysis. In parallel, replica wall paintings, created with known pigments and binding media for reference purposes, were examined with optical microscopy and stain tested for organic materials. The overall study shows that the LIBS and Raman techniques offer key advantages, such as instrument mobility and speed of data collection and interpretation that are particularly important when dealing with on-site investigations. Thus, they are capable of providing important compositional information in an effective manner that enables quick surveying of wall paintings and permit targeted sample selection for further analysis by advanced laboratory techniques.  相似文献   

4.
This study concerns the investigation of pigments and efflorescence phenomena on the wall paintings of Kastoria, a rural, non-metropolitan Byzantine town. A large number of representative samples were collected from the murals of three churches, dated to post-Byzantine era (14th-17th c. AD). The identified pigments for the red colour were hematite (Fe2O3), cinnabar (HgS) and minium (Pb3O4), while brown and yellow colours were attributed to mixtures of ochres (Fe-oxides and hydroxides) and lime. The utilization of admixtures of iron, lead and mercury compounds was also attested in order to render specific tones on the painted surfaces. Black and dark blue hues were prepared using black carbon and Mn in some cases. Grey colours were assigned to a mixture of black carbon and lime. Green colour is rather attributed to admixtures of Fe-rich minerals and lime and not to the commonly used green earths. Baryte (BaSO4) was also evidenced as a filler or extender. Phosphorous was detected and connected to proteinaceous material and Mo and Sb were traced which are probably affiliated to Fe-oxides. Regarding efflorescing salts, the determined compounds are: calcite, dolomite, gypsum, halite, nitratine, natron and mirabilite, all of which are related to temperature and humidity changes and moisture fluctuations inside the wall paintings.  相似文献   

5.
《Analytical letters》2012,45(16):2708-2721
The goal of this study was to characterize pigments used in the murals of two Byzantine churches, from Kastoria, northern Greece. The identification of the iconographer was also investigated by comparing the pigments applied in the wall paintings of the churches. Pigment microsamples of various colors were collected and analyzed by environmental scanning electron microscopy coupled with an energy dispersive system to characterize the elemental composition. Raman spectroscopy was employed to collect molecular spectra for characterization of mineralogical phases. Hematite, cinnabar, and minium were identified in red surfaces. Brown and yellow colors were assigned to mixtures of iron oxides, iron hydroxides, and calcite. Mixtures of iron, lead, and mercury compounds were used to produce different hues in the murals. Black tones were prepared primarily using charcoal and bone black. Grey colors were produced by a mixture of black carbon with calcite; blue hues, by a mixture of iron oxides, calcite, and black carbon. The minerals used were similar for both churches. However, the green color was prepared either by green earth or mixtures of iron oxides and calcite. A modern pigment, lithopone, was also determined, demonstrating restoration or overpainting and thus complicating possible correlations. Based on these preliminary results, the wall paintings could not be ascribed to a specific iconographer.  相似文献   

6.
Correct identification of pigments and all accompanying phases found in colour layers of historical paintings are relevant for searching their origin and pigment preparation pathways and for specification of their further degradation processes. We successfully applied the analytical route combining non-destructive in situ X-ray fluorescence analyses with subsequent laboratory investigation of micro-samples by optical microscopy, scanning electron microscopy/energy-dispersive spectroscopy and X-ray powder micro-diffraction (micro-XRD) to obtain efficiently all the data relevant for mineralogical interpretations of the copper pigments origin. Cu salts (carbonates, chlorides, sulphates, etc.) used as pigments exist in a range of polymorphs with similar or identical composition. The efficiency of the micro-XRD for direct identification of such crystal phases present in micro-samples of colour layers was demonstrated in the presented paper. A new, until now unpublished, type of copper pigment—cumengeite, Pb21Cu20Cl42(OH)40—used as a blue pigment on a sacral wall painting in the Czech Republic was found by means of micro-XRD. Furthermore, azurite, malachite, paratacamite, atacamite and posnjakite were identified in fragments of colour layers of selected Gothic wall paintings. We found Cu–Zn arsenates indicating the natural origin of azurite and malachite; artificial malachite was distinguishable according to its typical spherulitic crystals. The corrosion of blue azurite to green basic Cu chloride was clearly evidenced on some places exposed to the action of salts and moisture—in a good agreement with the results of laboratory experiments, which also show that oxalic acid accelerates the corrosion of Cu pigments.  相似文献   

7.
Historic plasters from wall paintings of Byzantine and post-Byzantine churches situated in the Balkan region were studied. All wall paintings were made with fresco technique and are dated from IX - XVI century. Plaster samples were followed from room temperature to 1000°C by Thermogravimetric (TG) and Differential Thermal Analysis (DTA), and one or two significant temperature regions, corresponding to thermal decomposition mechanisms were observed. The analysis of the plaster samples and the composition characterization was carried out using also, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Although the main components are calcite and quartz (from sand) in different proportions, there are differences between them such as the presence of gypsum being either as a constituent element or due to environmental pollution. The results are examined comparatively taking into account the creation time and place of the paintings.  相似文献   

8.
Mural paintings which decorate the external façade and the internal apsidal wall of a chapel dedicated to St. Maxime and located at Challand St. Victor in the Aosta Valley (Italy) have been analysed with a combined approach involving high-resolution fibre-optic reflectance spectroscopy (FORS), X-ray fluorescence (XRF) spectrometry and Raman spectroscopy. The paintings are attributed to Giacomino from Ivrea, a painter active around the mid-fifteenth century. In order to characterise the palette used by the painter and to yield information useful to restorers, the cited techniques were used either in situ with portable instruments and in laboratory, working on micro samples withdrawn from paintings. The global analytical approach, though not entirely non-invasive, can indeed be considered non-destructive as multiple analyses, including SEM-EDX, could be carried out on the micro samples, exploiting the features of each technique. On the basis of the information obtained, the palette was found to be composed of typical fresco pigments such as calcite, azurite, malachite, vermilion, red and yellow ochres. A particular situation was noted for black pigments since the presence of graphite, rather than wood or lamp carbon, was found, possibly related to the presence of graphite deposits in the Aosta Valley. Furthermore, the presence of smalt superimposed to azurite in areas showing evidence of repainting was detected, suggesting that paintings were subjected to retouching at a relatively early stage after the original execution. Finally, the presence of tin foils, used to decorate haloes of Evangelists, was ascertained.  相似文献   

9.
In this work, we present the results of an analytical method developed for detailed pigment identification, stratigraphy, and degradation of the paint layers of mural paintings applied in the study of the 17th century frescoes from the Misericordia Church of Odemira (Southwest Portugal). In situ X-ray fluorescence spectrometry analyses were performed on three panels of the mural paintings and complemented by colorimetric measurements. The different color areas were also sampled as microfragments (approx. 1 mm2) that were studied as taken or mounted in epoxy resin to expose the different paint layers. The microfragments of paint layers and their cross sections were characterized by optical microscopy and scanning electron microscopy coupled with energy dispersive X-ray spectrometry. Furthermore, elemental analysis was obtained with spatially resolved confocal synchrotron radiation μ-X-ray fluorescence spectrometry performed at ANKA synchrotron FLUO beamline. Occasionally, phase analysis by μ-X-ray diffraction was also performed. Results from the different techniques allowed pigment identification and, in some cases, the evaluation of color changes due to degradation processes and, considering the Southern Portugal geology, the identification of their possible provenance. The pigments used were essentially yellow, brown and red ochres, smalt blue, copper green, and black earths, probably from local sources.  相似文献   

10.
Fortunato G  Ritter A  Fabian D 《The Analyst》2005,130(6):898-906
White lead (2PbCO(3).Pb(OH)(2)), a common component in 17c. artists' painting materials, was singled out to investigate the potential of lead isotope abundance ratios in the field of authentication and origin assignment. Paintings by Peter Paul Rubens, Anthony van Dyck and other Old Masters of the Northern and Southern schools were chosen for this study. An interdisciplinary approach was chosen using both analytical instrumental methods, art technological and art historical knowledge. Minute samples taken from paintings from selected art collections worldwide were investigated using mass spectrometry, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The high precision lead isotope abundance ratios were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The determination of the calcium matrix influence with respect to possible bias effects to the isotope ratios gave clear decision support, to whether a result lies within the stated combined measurement uncertainty of the result, to eliminate time-consuming matrix separations. The scatter plots of the measured isotope abundance ratios for the painting pigments from P. P. Rubens, A. van Dyck and other Flemish painters exhibit a very narrow distribution forming a cluster. The range of the measured ratio (206)Pb/(204)Pb amounts to 0.55% and for the ratio (207)Pb/(204)Pb to 0.2%. The comparison of the data to cis-alpine (Italian) sample pigments from paintings from the same time period reveals a clear distinction between the two fields. With respect to the lead isotope data originating from the ores it is assumed that the pigment isotope ratio distribution can be explained by very distinct origin of raw materials. Presumably, no mixing of different lead ores from Europe took place. The comparison of the measured white lead isotope ratio values (Flemish paintings) and the data from ore samples led to the unexpected conclusion that local ores were not used for the pigment production but British or German sources.  相似文献   

11.
A multi-method approach has been developed for the characterisation of the proteinaceous binding media, drying oils and pigments present in samples from the panel paintings of the Church of the Assumption in Cephalonia (Ionian Islands, Greece). The analytical protocol involved the use of scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX), Raman spectroscopy and gas chromatography. The identification of the pigments was achieved by SEM/EDX and Raman spectroscopy. The latter technique was also used for the detection of the binding media, while their characterisation was achieved by gas chromatographic analysis of ethyl chloroformate derivatives. The aim of this multi-method protocol was to obtain as much information as possible from the panel paintings of the Church of the Assumption, through non-destructive methods, before proceeding to gas chromatography. Little scientific information is available for the understanding of the construction technique and the materials used by the post-Byzantine artists and whatever is available comes mainly from artists’ manuals. One of the aims of this paper is to provide a scientific background to the technology of the Ionian post-Byzantine icons.  相似文献   

12.
The use of visible spectroscopy, applied to chromatic characterization of Roman wall paintings, allows an easy and trustworthy grouping of the samples studied. The use of other spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS) in conjunction with X-ray diffraction (XRD) allows a good identification of the substances present in the pictorial layers that define and differentiate each chromatic group. In this paper, a study of 40 Roman wall painting samples, from Pinturas Báquicas of Casa del Mitreo in Emerita Augusta (Mérida, Spain), is described. In these samples, some pigments of high quality and cost, as well as some unusual mixtures, not described in the bibliography, have been found.  相似文献   

13.
The multi-technique analytical approach has proved to be a very effective tool for the analysis of artwork, as demonstrated by various studies. In this work, four micro-analysis methods were used to analyze the wall painting fragments in Kaiping Diaolou, a world cultural heritage enlisted in 2007. Field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray micro-analysis (EDX), combined with micro Raman and Fourier transform infrared (FT-IR) spectroscopy, provided a vast amount of information concerning the raw materials present in the pigments, organic binder, plasters and mortars of the wall painting. Four types of pigments (goethite, lazurite, chromium green and calcite) were identified on the surface layer of the wall paintings. The substrate under the pigment layer was found to be composed of cubic-like calcite (CaCO3), micro-rod bundle-shaped syngenite (K2Ca(SO4)2·H2O), gypsum (CaSO4·2H2O) and silica (SiO2). The organic binder can be attributed to animal glue (such as egg) and drying oil by micro FT-IR spectroscopy. These analysis results can provide important information for the conservation and restoration of the Kaiping Diaolou.  相似文献   

14.
In the Roman wall paintings different white colours were used, named Paraetonium, Melinum, Anularia, Eretria, Argentaria, etc. FTIR, Raman spectroscopy and X-Ray diffraction were applied to study different white pigments, such as calcite, aragonite, dolomite and huntite, white carbonates present in archaeological findings from Roman walls in the Mediterranean region. This study showed that it is possible to distinguish and identify these components in white colours. About 450 samples of Roman wall paintings were analysed and it was observed that often aragonite is associated to precious coloured pigments. On the basis of the obtained results some considerations about the period in which the different kinds of white pigments were used are proposed.  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS) was used in combination with Raman microscopy, for the identification of pigments in different types of painted works of art. More specifically, a 19th century post-Byzantine icon from Greece and two miniature paintings from France were examined and detailed spectral data are presented which lead to the identification of the pigments used. LIBS measurements yielded information on the presence of pigments or mixtures of pigments based on the characteristic emission from specific elements. Identification of most pigments was performed by Raman microscopy. As demonstrated in this work, the combined use of LIBS and Raman microscopy, two complementary techniques, leads to a detailed characterization of the paintings examined with respect to the pigments used.  相似文献   

16.
This article provides a short review of mineral-based pigments used in paintings with examples drawn from technical studies of selected historic paintings. Pigments such as azurite, natural ultramarine, orpiment, and clay earth pigments have been identified. Some examples will also be given of particular case studies which describe the alteration of selected pigments and consequences of these interactions. The second theme shows how use has been made of such interactions in evaluating the effects of environmental impact on paintings and reference is made to previous studies and the application of paint films as dosimeters. Accelerated ageing and site exposure studies are reported, and results provide information on pigment binder interactions. Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TG) have been used to characterise the behaviour of pigments in binding media and to assist in characterising samples from wall paintings. Reference is also made to the occurrence of iron-oxide based minerals present as corrosion products in archaeological iron objects. Examples are given of objects from two archaeological sites in England, the Anglo-Saxon burial site Sutton Hoo in Suffolk, and the burial site in Wetwang, East Yorkshire. It will be shown that post excavation changes occur in the objects and this information is used to inform preventive conservation of these objects, in storage and in display.  相似文献   

17.
This paper is a study of the analytical capacity of Fourier transform infrared spectroscopy (FT-IR) for any type of samples from works of art. The analytical information obtained with this technique on organic and inorganic compounds is extremely useful in the preliminary studies necessary for diagnosis and to decide on the conservation process. This paper reports the analysis and study with FT-IR on samples extracted from the microlayers in several works of art from different periods (16th to 18th century) comprising wall paintings and canvas. The most outstanding of these being the frescoes by A. Palomino from two ceilings in the Santos Juanes church. The analytical procedures for the different components of the works studied such as

1. (a) varnish applied to wood panels and canvas paintings,

2. (b) binding media and pigments used by the artists,

3. (c) inerts, mortars, stuccos and grounds have been optimized. The FT-IR technique offers a quick analysis of microsamples (less than 0.5 mg) and is able to characterise the different molecular groups which provide information on the nature of the different materials of organic and inorganic origin used by the artist and thus permits the diagnosis of pathologies requiring conservation treatment.

Author Keywords: Infrared spectrometry; Fourier transform; Wall and canvas painting analysis; Restoration/conservation of works of art  相似文献   


18.
In this paper the analysis of samples of Roman age wall paintings coming from: Pordenone, Vicenza and Verona is carried out by using three different techniques: energy dispersive x-rays spectroscopy (EDS), x-rays fluorescence (XRF) and proton induced x-rays emission (PIXE). The features of the three spectroscopic techniques in the analysis of samples of archaeological interest are discussed. The studied pigments were: cinnabar, yellow ochre, green earth, Egyptian blue and carbon black.  相似文献   

19.
The wooden construction painting is a type of an ancient decorative art on Chinese ancient structures. Comprehensive reports concerning the composition of these materials are rather limited. Here multiple analytical methods were applied to systematically explore the morphology and materials. Several paintings were characterized using a morphological microscope. Scanning electron microscopy–energy dispersive spectrometry (SEM-EDS), X-ray fluorescence (XRF), and X-ray diffraction (XRD) detected emerald green and ultramarine in the paint layers. Gas chromatography–mass spectrometry (GC-MS) indicated that the binding medium in the first layer was composed of blood. Our study helps to comprehensively understand the preparation of the wooden construction paintings in the renowned Summer Palace and provide a scientific basis for its restoration and related archeology work.  相似文献   

20.
Fragments of wall paintings from Istria, coming from the Basilica of Guran near Vodnjan, from the cemeterial Church of Saint Simeon in Guran and from the Benedictine monastery of Santa Maria Alta near Bale were studied. The analytical instrumental techniques used were Optical Microscopy, Scanning Electron Microscopy equipped with an EDS microanalysis detector, X Ray diffraction, FTIR infrared Spectroscopy and Raman Spectroscopy. Red and yellow pigments used in Guran and Bale have bean derived from red and yellow istrian bauxites, as already demonstrated for works from 11th to 15th century. The blue pigment found in the paintings of the Bale Chapel is a lapislazzuli blue; this fact confirms the literature data referring to the period from 11th to the 16th century. The materials and pigments used at Bale and Guran fit with the Istrian tradition and history of painting going back to the first Carolingian period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号