首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ali Dogan 《哲学杂志》2018,98(1):37-53
The viscosity of a few Cu–In–Sn liquid alloys has been investigated by a number of geometric (Muggianu, Kohler, Toop) and physical thermodynamic models (Kozlov–Romanov–Petrov, Budai–Benko–Kaptay, Schick et al.) and GSM for the cross section (z/y = 1/3) in Pb-free liquid alloy Cux–Iny–Snz at 1073 K. Moreover, the surface tensions of the same liquid alloys have been investigated by a number of geometric models and the Butler model for the cross section Cux–Iny–Snz (z/(y + z) = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) at the same temperature. The best agreement of the surface tensions was obtained in the Kohler model for xCu = 10 at % and the Butler model for xCu = 20 at % and xCu = 30 at.%, respectively. The best agreement among chosen geometric and physical models and experiment for these selected sections Cu80In15Sn5, Cu75In15Sn10, Cu55In7Sn38, Cu33In50Sn17 and Cu26In55Sn19 at 1073 K was obtained for the Budai–Benkö–Kaptay model.  相似文献   

2.
Thermodynamic, transport and surface properties of Ag–Cu liquid alloys have been investigated on the basis of a simple statistical model. The free energy of mixing, heat of mixing and entropy of mixing have been computed to understand the thermodynamic properties of Ag–Cu alloys in liquid state at 1,423 K. The concentration–concentration fluctuations in the long wavelength limit and the chemical short range order parameter have been determined to comprehend the microscopic and structural information of the alloy. The viscosity and surface tension of the alloy have been evaluated to analyze the transport and surface properties. The theoretical analysis reveals that the energy parameter is temperature dependent, and that Ag–Cu liquid alloy is a weakly interacting-phase separating system.  相似文献   

3.
4.
5.
Hüseyin Arslan  Ali Dogan 《哲学杂志》2019,99(10):1206-1224
Experimental data in the literature are almost limited to determine the thermophysical properties of multicomponent complex alloys, especially due to the inability of laboratories to achieve the desired ideal conditions, due to the difficulty of protection from oxidation at high temperatures and other contamination at high temperatures, due to time and cost in laboratory studies. Due to these reasons, the theoretical data obtained in this subject is of great importance. In this study, a series of geometric and physical models, such as Chou’s general solution model (GSM), Muggianu’s Model, Kohler’s Model, Toop’s Model, Hillert’s Model, Guggenheim’s Model, Butler’s Model, Egry’s Model and ideal solution model for quasi-binary alloy system for Section A: Ni0.4(1 – x)CuxFe0.6(1 – x). and Section B: (NixCu0.2Fe0.8 – x) are used to calculate the surface tension-composition and surface tension-temperature curves of the Cu-Fe-Ni ternary liquid system are plotted. The data for this process is evaluated by means of an extended Redlich-Kister-Muggianu polynomial fit to the experimental values of the surface tensions of the binary liquid alloy systems. The obtained results for these models are also compared with the available data in the literature and relatively good agreements are observed. In addition, the surface segregation having important key factor in determining surface tension of the liquid alloy Ni-Fe-Cu has also been investigated in this work.  相似文献   

6.
The thermodynamic properties, such as free energy of mixing, heat of mixing, activity and structural properties, such as concentration fluctuation in long wavelength limit, short-range order parameter of Pb–Hg liquid alloy at 600 K have been calculated using theoretical modelling. It has then been correlated with modified Butler model to compute the surface tension of the alloys at different temperatures. The Pb–Hg system at 600 K is found to be ordering at higher concentration of Pb.  相似文献   

7.
Methyl green (MG) film has been grown for the first time on p–Ge semiconductor using a simple and low-cost drop coating method. The current–voltage (IV) characteristics of Al/p–Ge and Al/MG/p–Ge diodes have been investigated in the temperature range of 20–300 K. A potential barrier height as high as 0.82 eV has been achieved for Al/MG/p–Ge diode, which has high rectification rate, at room temperature. It is seen that the barrier height of the Al/MG/p–Ge diode at the room temperature is larger than that of Al/p–Ge diode and ideality factor value of 1.14 calculated for Al/MG/p–Ge diode is lower than Al/p–Ge diode. The temperature coefficient of barrier height of the Al/MG/p–Ge diode has been calculated as 2.6 meV/K. The evaluation of current–voltage characteristics shows that the barrier height of the diode increases with the increasing temperature.  相似文献   

8.
The density and the thermal expansion of liquid lithium–lead alloys with Pb content of 83.0 and 84.3 at. % was measured using gamma-ray attenuation technique over the temperature range from liquidus to 1000 K. The density change during solid–liquid phase transition was directly measured for the first time for Li15.7Pb84.3 alloy. A comparison of the obtained results with literature data has been carried out.  相似文献   

9.
In this paper, we present extensive self-consistent results of molecular dynamics (MD) simulations of diffusion and thermotransport properties of Ni–Al liquid alloys. We develop a new formalism that allows easy connection between results of the MD simulations and the real experiments. In addition, this formalism can be extended to the case of ternary and higher component liquid alloys. We focus on the temperature and composition dependence of the self-diffusion coefficients, interdiffusion coefficients, thermodynamic factor, Manning factor and the reduced heat of transport. The two latter quantities both represent measures of the off-diagonal Onsager phenomenological coefficients. The Manning factor and the reduced heat of transport can be related to experimentally obtainable quantities provided the thermodynamic factor is available. The simulation results for the reduced heat of transport show that for all compositions, in the presence of a temperature gradient, Ni tends to migrate to the cold end. This is in agreement with an available experimental study for a Ni21.5Al78.5 melt (only qualitative result is available so far).  相似文献   

10.
The specific heats of liquid Ti–20at.%Al and Ti–51at.%Al alloys are determined to be 33.01±2.75 and 31.27±2.91 J mol−1 K−1 in the stable superheated and metastable undercooled states by using an electromagnetic levitation drop calorimeter. The experimental temperature ranges are 1733–2133 K and 1511–1948 K, and maximum undercoolings of 230 (0.12 T L) and 242 K (0.14 T L) are achieved, respectively. On the basis of the experimental results, the specific heat dependence on the composition is obtained for binary Ti–Al alloys.  相似文献   

11.
Single-crystalline Sb-doped Ge nanowires (NWs) with excellent structural properties and uniform composition have been synthesized with high yield by vapor–liquid–solid (VLS) growth by low-temperature thermal evaporation from a mixture of Ge and Sb powders. During deposition, both the Ge and the Sb dopant became incorporated in the VLS seed nanoparticle. In situ annealing experiments during transmission electron microscopy establish that a liquid ternary Au-Sb-Ge alloy constitutes the active phase of the VLS seed drop at high temperatures, which governs the growth of the one-dimensional Ge NW and its doping by Sb.  相似文献   

12.
Thermodynamic and structural properties of mixing of molten Tl–Na alloys at 673 K have been investigated using quasi-chemical model. To understand the mixing behaviour in more detail, emphasis is placed on the role of interaction energy term, and viscosity and surface tension of the alloys have also been analysed under statistical considerations. Our study shows negative deviation from the Raoultian behaviour in the properties of Tl–Na alloy thereby indicating hetero-coordination in the Tl–Na melt at 673 K in the full range of concentration. Theoretically, computed thermodynamic data at 673 K agree very well with the corresponding experimental data. The viscosities of the alloys computed from Kaptay equation show small negative deviation and those computed from Singh and Sommer’s formulation show small positive deviation from ideal values while the Budai-Benko-Kaptay equation predicts noticeable negative deviation in Na-rich end and positive deviation in Tl-rich end of the composition. The calculations of surface tension reveal that results obtained from layered structure approach and compound formation model are in good agreement in the Na-rich side and in reasonable agreement in Tl-rich side of the composition, while those computed from Butler equation show noticeable deviations in the intermediate compositions. Both the viscosity and surface tension of liquid Tl–Na alloys increase with addition of Tl-component, viscosity having approximately linear variation with concentration. The study shows that there is non-linear variation in surface composition with bulk concentration and for most of the compositions the surface of the alloy is enriched with Na-atoms which segregate to the surface.  相似文献   

13.
A number of Ge17Ga4Sb10S69−xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge–Ga–Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.  相似文献   

14.
The effect of microalloying with rhenium on a metallic glass-forming alloy (Cu46Zr46Al8)100? x Re x (x?=?1,?2) was investigated. Re possesses a positive enthalpy of mixing within the Cu–Re terminal system. Splat quenched foils of ≈40?µm in thickness display an amorphous structure. Their crystallisation temperature increases from T x?=?504 to 513°C with addition of Re at nearly constant glass formation temperature T g?=?445°C for the amorphous samples. In contrast, injection cast rods consist of B2-CuZr type phase dendrites, minor fractions of a cubic phase CuZrAl, and randomly distributed small particles of a Re-rich phase. This represents a novel concept in microalloying where Re-rich precipitates trigger the B2 phase formation. It leads to a unique combination of mechanical properties for as-cast rods, which display high strength at sizeable plastic deformation up to ε p?≈?4% and an extended range of work-hardening prior to failure.  相似文献   

15.
16.
Ali Dogan 《哲学杂志》2018,98(27):2529-2542
In this work, the surface tension of Cu–Ti binary liquid alloys is calculated in the framework of Eyring theory as a function of composition and temperature. It is observed that for all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope, and the temperature coefficient of surface tension decreases as Ti-content of the alloys increases linearly. The obtained theoretical results are compared to the experimental data available in the literature as well as to the theoretical results evaluated by using four models, such as the compound formation model, the quasi-chemical approximation for regular solutions, ideal solution model and Butler model treated in literature frequently.  相似文献   

17.
The pressure-dependence of mechanical, electronic and thermodynamic properties of metastable (L12 type) and stable (D023 type) Al3Zr precipitations in Al–Li alloys were investigated by employing the first-principle calculations. The calculated equilibrium parameters are in good agreement with experimental and previous calculation results available. Elastic properties including bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal anisotropic index are determined by Voigt–Reuss–Hill approximation. It is found that for both phases, external pressure can improve the mechanical stability, ductility and plasticity. The electronic structures are determined to reveal the bonding characteristics of both phases. In addition, both phonon method and Gibbs program have been proposed to predict thermodynamic properties of two phases. All of these results can help to have a better understanding of the physical and chemical properties of Al3Zr precipitations in Al–Li alloy. And can offer theoretical guidance for the weight lighting, energy conservation and emissions reduction in the design of new aluminium alloys.  相似文献   

18.
The results from measuring the density and surface tension of Sn–In melts via the sessile drop method in a helium atmosphere and at a residual gas pressure of 0.01 Pa are presented. The density polytherms of all samples are linear with negative temperature coefficients. In the range of 550–750°C, the surface tension falls linearly as the temperature rises.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号