首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An accurate gas-phase acidity for germane (enthalpy scale, equivalent to the proton affinity of GeH3 ?), ΔH acid o(GeH4) = 1502.0 ± 5.1 kJ mol?1, is obtained by constructing a consistent acidity ladder between GeH4, and H2S by using Fourier transform-ion cyclotron resonance spectrometry, and 0 and 298.15 K values for the first bond dissociation energy of GeH4 are proposed: D0 o(H3Ge-H) = 352 ± 9 kJ mol?1; D o(H3Ge-H) = 358 ± 9 kJ mol?1, respectively. These results are compared with experimental and theoretical data reported in the literature. Methylgermane was found to be a weaker acid than germane by approximately 35 kJ mol?1: ΔH acid o = 1536.6 kJ mol?1.  相似文献   

2.
The enthalpy of sublimation of benzamide was obtained by calorimetry in the range 323<T (K)<350. From values of ΔHsub(T)=f(T), it was possible to determine ΔH0sub (298.15 K)=101.7±1.0 kJ mole?1. Using previous data on ΔH0f (c, 298.15 K) obtained by combustion calorimetry, the value of ΔH0f (g, 298.15 K)=?100.9±1.2 kJ mole?1 was calculated. With the use of energetical values concerning thioacetamide, thiobenzamide and thiourea, on the one hand, and acetamide, benzamide and urea, on the other, a comparative study was made.  相似文献   

3.
Microcalorimetric measurements at 520–523 K of the heats of thermal decomposition and of iodination of bis-(benzene)molybdenum and of bis-(toluene)tungsten have led to the values (kJ mol?): ΔHof[Mo(η-C6H6)2, c] = (235.3 ± 8) and ΔHof[W(η6-C7H8)2, c] = (242.2 ± 8) for the standard enthalpies of formation at 25°C. The corresponding ΔHof(g) values, using available and estimated enthalpies of sublimation, are (329.9 ± 11) and 352.2 ± 11) respectively, from which the metalligand mean bond-dissociation enthalpies, D(Mo—benzene) = (247.0 ± 6) and D(W—toluene) = (304.0 ± 6) kJ mol?1, are derived.  相似文献   

4.
Enthalpies of sublimation for pyrazole and imidazole have been obtained by calorimetry at 298.15K. The ΔH0sub (298.15 K) values for these two compounds are, respectively, 69.16 ± 0.32 and 74.50 ± 0.40 kJ mole?1. From literature data obtained by combustion calorimetry for ΔH0f (c, 298.15 K), the enthalpies of formation of these compounds in the gaseous state (pyrazole: 185.1 ± 2.3 kJ mole?, imidazole: 133.0 ± 1.7 kJ mole?1) have been derived. Several energy values related to the molecular structure of these two compounds (as resonance energy, enthalpy of isomerization, …) have been determined. The study of pyrazole has enabled us to contribute to the evaluation of some characteristics of the NN bond.  相似文献   

5.
Restricted rotation about the naphthalenylcarbonyl bonds in the title compounds resulted in mixtures of cis and trans rotamers, the equilibrium and the rotational barriers depending on the substituents. For 2,7-dimethyl-1,8-di-(p-toluoyl)-naphthalene (1) ΔH° = 3.66 ± 0.14 kJ mol?1, ΔS° = 1.67 ± 0.63 J mol?1 K?1, ΔHct = 55.5 ± 1.3 kJ mol?1, ΔHct = 51.9 ± 1.3 kJ mol?1, ΔSct = ?41.3±4.1 J mol?1 K?1 and ΔSct = ?42.9±4.1 J mol?1 K?1. The rotation about the phenylcarbonyl bond requires ΔH = ?56.9±4.4 kJ mol?1 and ΔS = ?20.5±15.3 J mol?1 K?1 for the cis rotamer, and ΔH = 43.5Δ0.4 kJ mol?1 and ΔS =± ?22.4Δ1.3 J mol?1 K?1 for the trans rotamer. The role of electronic factors is likely to be virtually the same for both these rotamers but steric interaction between the two phenyl rings occurs in the cis rotamer only. Hence, the difference of the activation enthalpies obtained for the cis and trans rotamers, ΔΔH?1 = 13.4 kJ mol?1, provides a basis for the estimation of the role of steric factors in this rotation. For the tetracarboxylic acid 2 and its tetramethyl ester 3 the equilibrium is even more shifted towards the trans form because of enhanced steric and electrostatic interactions between the substituents in the cis form. The barriers for the rotation around the phenylcarbonyl bond and the cis-trans isomerization are lowered; an explanation for this result is presented.  相似文献   

6.
2D 1H-1H EXSY NMR spectroscopy show that the free energy of activation ΔG in six 3-allyl-3-borabicyclo[3.3.1]nonane derivatives is significantly higher (72–86 kJ mol?1) than that in typical allylboranes (48–66 kJ mol?1). For the first member of the series, viz., 3-allyl-3-borabicyclo[3.3.1]nonane, the activation parameters of the permanent allylic rearrangement were also determined (ΔH = 82.7±3.4 kJ mol?1, ΔS = ?11.8±10.3 J mol?1 K?1, E A = 85.5±3.4 kJ mol?1, lnA = 29.2±1.2).  相似文献   

7.
The enthalpies of reaction 1–3 have been determined
as ΔH(1) = ?176.6 ± 5.4, ΔH(2) = ?107.8 ± 6.0, and ΔH(3) = ?78.9 ± 2.0 kJ mol?1. The bond dissociation energy difference D1(PtCH3) ? D1(PtI) = +6 ± 5 kJ mol?1 is calculated, which indicates that the two bonds have very similar strengths.  相似文献   

8.
The title compound (1) was prepared in high purity by reducing 3,3-dibromo-2,2,4,4-tetra-methylpentane (2) with magnesium in the last step. The heat of combustion, ΔH0c(c), of 1 was measured using an aneroid isoperibol microcalorimeter and the heat of sublimation, ΔHsub, was obtained from the vapour pressure (35–93°C) measured in a flow system. The results: ΔH0c(c) = ?2913.3(±0.9), ΔH0f(c) = ?77.6(±0.9) and ΔH0f(g) = ?59.9(±0.9) kcal mol?1 lead to an outstandingly high value for the excess strain enthalpy (Hs = 66.3 kcal mol?1) revealing strong van der Waals repulsions in this highly crowded alkane.  相似文献   

9.
Low-temperature heat capacity of polynuclear Fe(HTrz)3(B10H10)·H2O (I) and trinuclear [Fe3(PrTrz)6(ReO4)4(H2O)2](ReO4)2 (II) spin crossover coordination compounds was measured in 80–300 K temperature range using a vacuum adiabatic calorimeter. For I, an anomaly of heat capacity with a maximum at T trs=234.5 K (heating mode) was observed, Δtrs H=10.1±0.2 kJ mol?1 Δtrs S=43.0±0.8 J mol? K?1. For II, a smooth anomaly between 150 and 230 K was found, Δtrs H=2.5±0.25 kJ mol?1 Δtrs S=13.6±1.4 J mol? K?1. Anomalies observed in both compounds correspond to 1A1?5T2 spin transition.  相似文献   

10.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

11.
Cyclohexane and piperidine ring reversal in 1-(3-pentyloxyphenylcarbamoyloxy)-2-dialkylaminocyclohexanes was investigated by 13C NMR. An unusually low conformational energy ΔG = 0.59 kJ mol?1 and activation parameters ΔG218 = 43.8 ± 0.4 kJ mol?1, ΔH = 48.9 ± 2.5 kJ mol?1 and ΔS = 23 ± 9 J mol?1 K?1 were found for the diequatorial to diaxial transition of the cyclohexane ring in the trans-pyrrolidinyl derivative. In the trans-piperidinyl derivative, ΔG222 = 44.7 ± 0.5 KJ mol?1, ΔH = 55.7 ± 6.3 kJ mol?1 and ΔS = 51 ± 21 J mol?1 K?1 was found for the piperidine ring reversal from the non-equivalence of the α-carbons.  相似文献   

12.
A stopped-flow investigation of the reversible addition of Ph3P to [(C8H11)Co(C5H5)]+ indicates the rate law, kobs = k1[Ph3P] + k?1. The low Δ2 of 21.0 ± 1.2 kJ mol?1 and the negative ΔS2 of ?114 ± 5 J K?1 mol?1 are consistent with rapid addition to the enyl ligand. The higher Δ2 of 86.2 ± 5.1 kJ mol?1 and the positive ΔS2 of +60 ± 17 J K?1 mol?1are as expected for the reverse dissociation. Preliminary studies show that the related complex [(C7H9)Co(C5H5)]+ is at least 65 times more electrophilic towards Ph3P.  相似文献   

13.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

14.
The enthalpy of formation at 298.15 K of the polymer Al13O4(OH)28(H2O)3+8 and an amorphous aluminium trihydroxide gel was studied using an original differential calorimetric method, already developed for adsorption experiments, and aluminium-27 NMR spectroscopy data. ΔHf “Al13” (298.15 K) = ? 602 ± 60.2 kJ mole?1 and ΔHf Al(OH)3 (298.15 K) = ? 51 ± 5 kJ mole?1. Using theoretical values of ΔGR “Al13” and ΔGR Al(OH)3, we calculated ΔGf “Al13” (298.15 K) = ? 13282 kJ mole?1; ΔSf “Al13” (298.15 K) = + 42.2 kJ mole?1; ΔGf Al(OH)3 (298.15 K) = ? 782.5 kJ mole?1; and ΔSf Al(OH)3 (298.15 K) = + 2.4 kJ mole?1.  相似文献   

15.
From measurement of the heat of hydrolysis, at 25°C , the enthalpy of formation of rubidium tetrafluoroiodate is derived: ΔH°f [RbIF4, cryst.]298= ?191.12±4.43 kJ mol?1. Heat capacity measurements for RbIF4 over the range 273–303 K are also reported.  相似文献   

16.
The equilibrium between fluoral in dichloromethane solution and live condensed liquid polyfluoral has been investigated between 22 and 43°C. Equilibrium monomer concentrations gave: ΔHac°(298 K) = -50-8 ± 2·3 kJ mol?1 and ΔSsc° (298 K) = -142·7 ± 7·4 J K-1 mol-1. With the aid of calibration and monomer vaporization data, thermodynamic values for the polymerization of liquid monomer to liquid polymer were also calculated: ΔHtc° (298 K) = -47 ± 3 kJ mol-1 and ΔS1e° (298 K) = -97 ± 10 J K-1 mol-1.  相似文献   

17.
The dissociation behavior of energy-selected tetraethylsilane, triethylsilane, and diethylsilane photocations is studied using the threshold photoelectron-photoion coincidence (TPEPICO) technique. In the 8–12. 5 eV photon energy range, 0 K dissociation onsets have been measured from the TPEPICO data. The dissociation channels observed include loss of ethane, hydrogen molecule, ethyl radical and hydrogen atom, depending upon the molecular ion under investigation. The thermochemistry of the molecular ions and dissociation fragments is obtained by an analysis that takes into account the kinetics and internal energy distributions of the ions. The various dissociation onsets permit the reevaluation of both neutral and ionic silane thermochemistry. We observed 298-K ethyl group values of 60±10 and 94±10 kJ mol?1 for neutral and ionic silanes, respectively. These values are considerably smaller than the previously reported values of 86 and 130 kJ mol?1, respectively. Finally, a Δ f H ° (298 K) of ?141.5 ± 21 kJ/mol for neutral diethyl silane is derived from the dissociative ionization onset of diethylsilane.  相似文献   

18.
Five new volatile lithium complexes were synthesized by reactions of lithium hydroxide monohydrate (LiOH · H2O) with β-diketones, namely, dipivaloylmethane (HDpm), hexafluoroacetylacetone (HHfa), trifluoroacetylacetone (HTfa), benzoyltrifluoroacetone (HBtfa), pivaloyltrifluoroacetone (HPta), and valeryltrifluoroacetone (HVta). The complexes obtained were studied by IR and electronic absorption spectroscopy, mass spectrometry, and comprehensive thermal analysis. The temperature dependence of the vapor pressure, which was obtained by the Knudsen effusion method with mass-spectrometric analysis of the vapor phase composition in the 400–450 K range, was used to calculate the standard thermodynamic parameters of the Li(Dpm) sublimation: ΔH°subl = 45.7 ± 1.7 kcal mol?1 and ΔS°subl = 77.9 ± 4.0 cal mol?1 K?1.  相似文献   

19.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

20.
The kinetics of decomposition of an [Pect·MnVIO42?] intermediate complex have been investigated spectrophotometrically at various temperatures of 15–30°C and a constant ionic strength of 0.1 mol dm?3. The decomposition reaction was found to be first‐order in the intermediate concentration. The results showed that the rate of reaction was base‐catalyzed. The kinetic parameters have been evaluated and found to be ΔS = ? 190.06 ± 9.84 J mol?1 K?1, ΔH = 19.75 ± 0.57 kJ mol?1, and ΔG = 76.39 ± 3.50 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67–72, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号