首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

2.
Rare-earth perchlorate complex coordinated with glycine [Nd2(Gly)6(H2O)4](ClO4)6·5H2O was synthesized and its structure was characterized by using thermogravimetric analysis (TG), differential thermal analysis (DTA), chemical analysis and elementary analysis. Its purity was 99.90%. Heat capacity measurement was carried out with a high-precision fully-automatic adiabatic calorimeter over the temperature range from 78 to 369 K. A solid-solid phase transformation peak was observed at 256.97 K, with the enthalpy and entropy of the phase transformation process are 4.438 kJ mol−1 and 17.270 J K−1 mol−1, respectively. There is a big dehydrated peak appears at 330 K, its decomposition temperature, decomposition enthalpy and entropy are 320.606 K, 41.364 kJ mol−1 and 129.018 J K−1 mol−1, respectively. The polynomial equations of heat capacity of this compound in different temperature ranges have been fitted. The standard enthalpy of formation was determined to be −8023.002 kJ mol−1 with isoperibol reaction calorimeter at 298.15 K.  相似文献   

3.
According to X-ray crystal structure analyses “cis-benzenetrisimine” (2) and “cis-benzenetrioxide” (1) act as tridentate ligands in their 2:1- and 4:1-complexes 7 (Co(C6H9N3)2(NO3)3) and 8 (Ba(C6H6O3)4(ClO4)2), resp. The latter is the rare example of an organic complex with the (approximate) T-symmetry.  相似文献   

4.
At low temperatures, the 19F n.m.r. spectrum of the tetrazan (CF3)2NN(CF3)N(CF3)N(CF3)2 shows the presence of two isomers with a free energy difference in stability ΔG of 2.2 kJ mol-1. Both isomers show three types of CF3 group which coalesce at -15°C to three systems of equal intensity (ΔG≠ 52 kJ mol-1). At 40 °C the two signals assigned to the terminal CF3 groups coalesce to a single band (ΔG≠ 65 kJ mol-1).The behaviour is discussed in terms of restricted inversion at the nitrogen atoms, and hindered rotation about the N-N bonds.The hydrazines (CF3)2NN(CF3)NO and (CF3)2NN(CF3)NO2 have temperature independent spectra.  相似文献   

5.
The LiPO3CeP3O9 and NaPO3CeP3O9 systems have been investigated for the first time by DTA, X-ray diffraction, and infrared spectroscopy. Each system forms a single 1:1 compound. LiCe(PO3)4 melts in a peritectic reaction at 980°C. NaCe(PO3)4 melts incongruently, too, at 865°C. These compounds have a monoclinic unit cell with the parameters: a = 16.415(6), b = 7,042(6), c = 9.772(7)Å; β = 126.03(5)°; Z = 4; space group C2c for LiCe (PO3)4; and a = 9.981(4), b = 13.129(6), c = 7.226(5) Å, β = 89.93(4)°, Z = 4, space group P21n for NaCe(PO3)4. It is established that both compounds are mixed polyphosphates with chain structure of the type |MIIMIIIII (PO3)4|MII: alkali metal, MIIIII: rare earth.  相似文献   

6.
Seeded supersonic NO beams were used to study the kinetic energy dependence of both the electronic (NO2*) and vibrational (NO23) chemiluminescence of the NO + O3 reaction. In addition the electronic CL is found to be enhanced by raising the NO internal temperature. This is shown to be due to enhanced reactivity of the NO(2Π,32) fine structure component. By difference NO(2Π12) is concluded to yield predominantly groundstate NO23. The excitation function for NO2* formation from NO(2Π32) is of the form σ32(E) = C(E/E0 - 1)n over the 3–6 kcal energy range where n = 2.4 ± 0.15, C = 0.163 Å2 and E0 = 3.2 ± 0.3 kcal/mole. Vibrational IR emission from NO23 has an energy dependence different from electronic NO2* emission, confirming that emitters are formed predominantly in distinct reaction channels rather than via a common precursor (either NO2* or NO23). The short wavelength cutoff of the CL spectra recorded at elevated collision energies E ? 15 kcal/mole corresponds to the total available energy. These and literature results are discussed in the light of general properties of the (generally unknown) ONO3 potential energy surfaces. The formation of electronically excited NO2* rather than energetically preferred O2 (1 Δg) (Gauthier and Snelling) can be rationalized in terms of surface hopping near a known intersection of potential energy surfaces more easily than by vibronic interaction in the asymptotic NO2 product.  相似文献   

7.
CsSbF6(II) under ambient conditions is trigonal, space group D3d5-R3m. At 187.8°C it undergoes a phase transition with an enthalpy change of 5.267 ± 0.316 kJ mole?1, to phase CsSbF6(I). CsSbF6 decomposes with loss of fluorine at atmospheric pressure at high temperatures, but under pressure the decomposition is prevented and a melting point of 310°C at atmospheric pressure can be inferred. The III phase boundary and melting curve were studied as functions of pressure. The infrared and Raman spectra of CsSbF6(II) were studied in the temperature range of ?256 to 20°C, at ambient pressure. The crystal chemistry of the CsSbF6 and its relationship with other related compounds is discussed.  相似文献   

8.
In CFCl3, aziridines I react with F2(6 %/N2,  20°C), COF2 (20 %/N2,  40°C) and CF3OF [1] (20 %/N2,  40°C).Substitution products are obtained : l-(aziridine)carbonyl fluorides II and l-Fluoroaziridines III
In (Et)2O, aziridines I react with COF2 (20 %/N2, 10°C) and we have the carbonyl fluorides IV.
Products IV can be thermally decomposed into β fluoro isocyanates.In CFCl3, N substituted aziridines V react with F2(6%/N2, 20°C) and with CF3OF [2] (20%/N2, 40°C). No reaction is observed with COF2in our conditions (5% to 25%/N2, 80°C to + 40°C).Addition products are obtained : N Fluoro amines β fluorinated VI, N Fluoro and NN difluoro amines β trifluoro methoxylated VII and VIII.
with R = SO2Ø, COØNO2, Cl.  相似文献   

9.
The high-temperature phase behaviour of RbH2PO4 and CsH2PO4 have been studied. RbH2PO4 undergoes a single quasi-irreversible phase transition with an enthalpy of 4.665 kJ mol?1. The transition is found to occur over the temperature range 86–111°C. CsH2PO4 undergoes two transitions at 149 and 230°C. The lower one is quasi-irreversible and has an enthalpy of 4.284 kJ mol?1. The one at 230°C is reversible and has an enthalpy of 1.071 kJ mol?1.  相似文献   

10.
The reaction of IrH3(PPh3)2 with p-substituted aryldiazonium salts gives the compounds [IrH2(NHNC6H4R)(PPh3)2]+BF4- at low temperature (-10°C) and the o-metalated complexes [IrH(NHNC6H3R)(PPh3)2]+BF4- (R  F, OCH3) at 40–50°C. The reactions of the o-metalated complexes with CO, PPh3, NaI and HCl have been studied.  相似文献   

11.
We have found for the first time a ferroelastic transition in many molybdates and tungstates with the Sc2(MoO4)3-type structure. Below the transition these phases are monoclinic (P21a), and above the transition they are orthorhombic (Pnca). Observed transition temperatures are: Al2(MoO4)3, 200°C; Al2(WO4)3, ?6°C; Cr2(MoO4)3, 385°C; Fe2(MoO4)3, 499°C; In2(MoO4)3, 335°C; In2(WO4)3, 252°C; and Sc2(MoO4)3, 9°C.  相似文献   

12.
The chemiluminescence produced by the Ba + Cl2 reaction was recorded as a function of He and N2 pressure. A modified Stern-Volmer treatment of competitive electronic quenching of BaCl* and BaCl*2 emission yielded upper limits to the half pressures p12(He) ? 9.0 ± 3 mtorr and p12 (N2) ? 1.1 ± 0.2 mtorr for quenching of BaCl*2 by helium and nitrogen, respectively. A lower limit of the BaCl*2 radiative lifetime is placed at τR ? 100 μ.  相似文献   

13.
The reactions of the lowest metastable states of Ar, Kr and Xe with XeF2 were studied in a flowing afterglow apparatus; XeF emission (from D2Π12 and B 2Π+ states) was observed in all cases. The total rate constants (cm3 molecule?1 s?1) for XeF* formation were determined as 75 × 10?11 ? Xe(3P2);64 × 10?11 ? Kr(3P2) and 20 × 10?11 ? Ar(3P0,2). The reactions of Ar(3P0,2) and Kr(3P2) with XeF2 also gave ArF* and KrF*, respectively. Analysis of these emissions indicates that at least two different mechanisms are operative: reactive quenching by the ionic—covalent curve-crossing mechanism and excitation transfer. The Ar(3P0,2 + XeF2 reaction is a sufficiently strong source of XeF(D—X) emission that the main features of the XeF(D2Π12 ? X2Σ+) system could be photographed and tentative assignments of these vibrational bands are given. The XeF(D → B) emission could not be observed and the ratio of the D—X versus the D—B transition probability must be > 1000 : 1.  相似文献   

14.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

15.
The molecular and crystal structure of tris(bistrimethylsilylamin)thallium was determined by means of single-crystal X-ray spectroscopy: in the space group P31c with a = 16.447(7), c = 8.456(7) Å; and Dc = 1.149 g cm?3 two molecules are located in the unit cell. The compound is isomorphous to the analogues Fe[N(SiMe3)2]3 or Al[N(SiMe3)2]3, respectively, which show a propellar-twist of the Si2N-groups versus the plane of the metal atom and the three nitrogen-atoms: Tl(N)3/Si2N 49.1°; SiNSi 122.6°; NSiC 111.8°; CSiC 107.1°; TlN 2.089 Å;; SiN 1.738 Å;; SiC 1.889 Å;.  相似文献   

16.
The reaction of dimethyl ketals with (CO)5MnSi(CH3)3 (1 at 50 °C in CH3CN affords methyl enol ethers, generally in 75–95% yields.  相似文献   

17.
The crystal structures of the apatites Ba10(PO4)6F2(I), Ba6La2Na2(PO4)6F2(II) and Ba4Nd3Na3(PO4)6F2 (III) have been determined by single-crystal X-ray diffraction. All three compounds crystallize in a hexagonal apatite-like structure. The unit cells and space groups are: I, a = 10.153(2), c = 7.733(1)Å, P63m; a = 9.9392(4), c = 7.4419(5)Å, P6; III, a = 9.786(2), c = 7.281(1)Å, P3. The structures were refined by normal full-matrix crystallographic least squares techniques. The final values of the refinement indicators Rw and R are: I, Rw = 0.026, R = 0.027, 613 observed reflections; II, Rw = 0.081, R = 0.074, 579 observed reflections; III, Rw = 0.062, R = 0.044, 1262 observed reflections.In I, the Ba(1) atoms located in columns on threefold axes, are coordinated to nine oxygen atoms; the Ba(2) sites form triangles about the F site and are coordinated to six oxygen atoms and one fluoride ion. The fluoride ions are statistically displaced ~0.25 Å from the Ba(2) triangles. This displacement of the F ions is analogous to the displacement of OH ion in Ca10(PO4)6(OH)2.The structures of II and III contain disordered cations. In II there is disorder between La and Na in the column cation sites as well as triangle sites. In III, Nd and Na ions are ordered in the column sites, but there is disorder among Ba and the remaining Nd and Na ions in the triangle sites to give an average site population of 23Ba, 16Nd, 16Na. The coordination of the rare earth ions and Na ions in the ordered column sites are nine and six oxygens, respectively, in accord with the greater charge of the rare earth ions as compared with Na. The F ions in both II and III suffer from considerable disorder in position, and their locations are not precisely known.  相似文献   

18.
Antimony(III)pentafluoroorthotellurate has been synthesized from SbF3 and B(OTeF5)3. Contrary to a previous report it is a low melting, sublimable solid (mp = 28°, bp (0.1 torr) = 68°, 19F - NMR: AB4 spinsystem δ (A) = ?42.7, δ (B) = ?38.1, J (AB) = 186 Hz). It reacts with F2, Cl2 and Br2 to give SbF2(OTeF5)3, SbCl4+Sb(OTeF5)6? and SbBr4+ Sb(OTeF5)6? respectively. Interaction of Xe(OTeF5)2 and Sb(OTeF5)3 yields Sb(OTeF5)5, which is unstable at room temperature. Salts containing the new anion Sb(OTeF5)6? have been synthesized either from Sb(OTeF5)5 and a corresponding pentafluoroorthotellurate e.g. Sb(OTeF5)5 + NMe4+ OTeF5? = NMe4+ Sb(OTeF5)6?, or from SbCl4 Sb(OTeF5)6? and an appropriate chloride SbCl4+ Sb(OTeF5)6? + NOCl = SbCl5 + NO+ Sb(OTeF5)6?, or oxidatively, using a mixture of Xe(OTeF5)2 and Sb(OTeF5)5, e.g. C6F6 + 12 Xe(OTeF5)2 + Sb(OTeF5)5 = C6F6+ Sb(OTeF5)6? + 12 Xe.  相似文献   

19.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

20.
Reaction of the amines (CF3)2NX (X=Cl,Br) with norbornadiene either in solvent (CH2Cl2) at ?78 °C in the dark or in the vapour phase at 20 °C in daylight gives a mixture of 3-halogeno-5-(NN-bistrifluoromethylamino)nortricyclene (exo, endo-and exo, exo-isomers) and exo-5-(NN-bistrifluoromethylamino)- anti-7-halogenonorbornene in quantitative yield formed via halonium ion addition to the diene. The reaction of the amine (CF3)2NBr in solvent Me2O or Et2O at ?78 °C in the dark gives the same products in low yield, together with 3-bromo-5-alkoxynortricyclene (exo, endo- and exo, exo-isomers) and the amine (CF3)2NR (R=Me, Et) in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号