首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Iron crystals doped with tin are known to exhibit segregation of more than one monolayer of tin to the (100) surface when heated in ultra-high vacuum. This unusually large coverage raises the question of whether the multilayer enrichment is due to equilibrium segregation or to some kind of metastable phenomenon. In the latter case, the presence of the bulk equilibrium second phase, FeSn, would be expected to cause a reduction in the surrounding tin coverage. This issue was addressed by the use of chemical-vapor deposition to seed the surface of a tin-doped crystal with this intermetallic compound. It was found that the presence of this second phase did not alter the equilibrium surface coverage, which returned quickly to its previous level by surface diffusion from the FeSn crystallites after surface cleaning by sputtering. The exact structure of this unique surface phase remains to be clarified.  相似文献   

2.
樊永年 《物理学报》1986,35(5):667-671
用AES和LEFD在700—800℃温度范围内研究了硫在钼(111)表面上的偏析动力学和表面结构。样品加热到800℃硫迅速地偏析到表面上并逐步地取代了表面上的碳。加热到700℃硫没有明显的表面偏析。硫的偏析主要受它的体扩散速率的控制,表面碳的存在也抑制了硫的表面偏析。不同温度下的偏析动力学实验后,分别进行了低能电子衍射实验,观察到钼(111)(31/2×31/2)R30°-硫和1/3(44-99)-硫两种表面结构的低能 关键词:  相似文献   

3.
The geometric and electronic structures occuring during the growth of Al on a single crystal Ag(111) surface have been studied using a combination of low energy electron diffraction (LEED), Auger electron spectroscopy (AES), energy loss spectroscopy (ELS) and work function measurements. The Auger signal versus deposition time plots, which were used to monitor the growth mode, are shown to behave in an identical fashion to that expected for layer-by-layer (Frank-van der Merwe) growth. LEED was used to determine the lateral periodicity of thin Al films and shows that Al forms, at very small coverages, 2D islands which have the same structure as the Ag(111) substrate and which grow together to form the first monolayer. At substrate temperatures of 150 K a well defined (1 × 1) structure with the same orientation as the underlying Ag(111) can be seen up to at least 12 ML. After completion of the third monolayer the ELS spectrum approached that observed for bulk aluminium. At a coverage of 3 ML the work function decreases by 0.4 eV from the clean silver value.  相似文献   

4.
By combining electron stimulated desorption (ESD) with low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and work function change (Δφ) measurements the information content of ESD with regard to surface structure and composition is examined, using the surface systems O/W(100) and O/W(110). Although it is not possible to separate the local interaction from the ion escape phase, the comparison of the ESD results with Information derived from LEED, AES and Δφ and the use of simple models of the local interaction gives a rather detailed picture of the location and environment of adsorbed atoms which provides a reasonably reliable basis for the interpretation of UPS spectra of adsorption layers.ESD is extremely sensitive to adsorbed layers. The fact that the ion signal depends not only on coverage but also on the structure and structure-dependent properties of the adsorbate makes on the one hand coverage determination difficult if not impossible, on the other hand opens the door to structure analysis. The potential for obtaining structure information can be easily assessed by comparison with electron probe results.In comparison with other ion probes such as ion scattering spectroscopy and secondary ion mass spectroscopy, ESD is at present the most promising ion probe method for obtaining information on the location of adsorbed atoms from angular and energy distribution measurement (ESDIAD and ESDIED). This is clearly seen by the comparison with the structural data derived from LEED, AES and Δφ measurements for the complex system O/W(100). The consistency of the data obtained with ESD and electron probe techniques lends strong support to the simple models on which the analysis of the ESD results from chemisorbed layers are based. The comparison of ESD results from the system O/W(100) at high coverage and from O/W(110) with 0+ ion emission from oxides shows, however, that caution is in place when assigning ESD features to atoms chemisorbed on the metal surface. Without a careful analysis of the ion energy, threshold and/or cross-section such ions cannot be distinguished from ions produced by dissociation of oxides which may be present on the surface only in small quantity. These ions usually are not related to the chemisorbed species which covers most of the surface and therefore dominates the signals seen with (nearly) all other surface probes.If the consistency of LEED, AES, Δφ and ESD data for O/W(100) is not fortuitous, then ESD has already given some important feed-back to the electron probe techniques: the structural models derived from vibrational ELS spectra have to be revised. Increasing accumulation of experimental data and deepening of the theoretical understanding of the physical processes involved in ion emission will have to show how much further information complementary to that from electron probes can be obtained from ion probes.  相似文献   

5.
The interactions at the evolving RuO2/titanium interface have been studied by LEED, AES and XPS. Titanium films of up to 5 monolayers were evaporated onto well ordered and ion sputtered ruthenium dioxide crystal surfaces of (110) and (100) orientation. Stabilization of the surface oxygen content under thermal treatment in UHV (up to 600°C) with increasing titanium coverage was established. After extended (up to 4 h) annealing in O2 at 600°C an epitaxial ordering of TiO2 on RuO2(110) was observed. The (1 × 1) LEED patterns from the epitaxial layer exhibit a reduced background level when compared to the RuO2 substrate itself. These findings are correlated with the XPS data and are interpreted in connection with the disappearance of the defect RuO2 phase in the surface layer of the RuO2. The appearance of the (1 × 2) surface reconstruction at the RuO2(100)/Ti interface is discussed in the context of maximum cation coordination by oxygen atoms.  相似文献   

6.
Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), electron energy loss (ELS) and ultraviolet photoemission spectroscopies (UPS) were used to study the structures, compositions and electron state distributions of clean single crystal faces of titanium dioxide (rutile). LEED showed that both the (110) and (100) surfaces are stable, the latter giving rise to three distinct surface structures, viz. (1 × 3), (1 × 5) and (1 × 7) that were obtained by annealing an argon ion-bombarded (100) surface at ~600,800 and 1200° C respectively. AES showed the decrease of the O(510 eV)Ti(380 eV) peak ratio from ~1.7 to ~1.3 in going from the (1 × 3) to the (1 × 7) surface structure. Electron energy loss spectra obtained from the (110) and (100)?(1 × 3) surfaces are similar, with surface-sensitive transitions at 8.2, 5.2 and 2.4 eV. The energy loss spectrum from an argon or oxygen ion bombarded surface is dominated by the transition at 1.6 eV. UPS indicated that the initial state for this ELS transition is peaked at ?0.6 eV (referred to the Fermi level EF in the photoemission spectrum, and that the 2.4 eV surface-sensitive ELS transition probably arises from the band of occupied states between the bulk valence band maximum to the Fermi level. High energy electron beams (1.6 keV 20 μA) used in AES were found to disorder clean and initially well-ordered TiO2 surfaces. Argon ion bombardment of clean ordered TiO2 (110) and (100)?(1 × 3) surfaces caused the work function and surface band bending to decrease by almost 1 eV and such decrease is explained as due to the loss of oxygen from the surface.  相似文献   

7.
Interfaces prepared by vapor deposition of Sn onto Pt(100) surfaces have been examined using the following techniques: Auger electron and X-ray photoelectron spectroscopy (AES and XPS), low-energy electron diffraction (LEED), and low-energy ion surface scattering (LEISS) with Ne+ ions. Tin deposition was conducted at 320 and 600 K, and the surface composition and order was examined as a function of further annealing to 1200 K. The AES uptake plots (signal versus deposition time) indicate that the Sn growth mode can be described by a layer-by-layer process only up to one adayer at 320 K. Some evidence of 3D growth is inferred from LEED and LEISS data for higher Sn coverages. For deposition at 600 K, AES data indicate significant interdiffusion and surface alloy formation. LEED observations (recorded at a substrate temperature of 320 K) show that the characteristic hexagonal Pt(100) reconstruction disappears with Sn exposures of 4.6 × 1014 atoms cm2Sn = 0.35 monolayer (ML)). Further Sn deposition results in a c(2 × 2) LEED pattern starting at a coverage of slightly above 0.5 ML. The c(2 × 2) LEED pattern becomes progressively more diffuse with increasing Sn exposure with eventual loss of all LEED features above 2.2 ML. Annealing experiments with various precoverages of Sn on Pt(100) are also described by AES, LEED, and LEISS results. For specific Sn precoverages and annealing conditions, c(2 × 2), p(3√2 × √2)R45°, and a combination of the two LEED patterns are observed. These ordered LEED patterns are suggested to arise from ordered PtSn surface alloys. In addition, the chemisorption of CO and O2 at the ordered annealed Sn/Pt(100) surfaces was also examined using thermal desorption mass spectroscopy (TDMS), AES, and LEED.  相似文献   

8.
The adsorption of oxygen on clean Ni(110) has been studied at room temperature and at 475 K by Rutherford backscattering, using the effects of channeling and blocking, and lowenergy electron diffraction. At both temperatures successive LEED structures are formed at low oxygen coverage (?0.5 monolayer). With increasing oxygen content stoichiometric NiO is formed on top of the Ni(110) surface, at room temperature as an amorphous layer and at 475 K as patches of crystalline oxide, oriented with the NiO(100) planes parallel to the Ni(110) surface plane. At 475 K the nickel atoms in the interface region between oxide and substrate are displaced over a thickness of less than 2 monolayers. Based on the measurement of the oxide composition as function of coverage we suggest a modification of the island growth model as proposed by Holloway and Hudson for the Ni(100) and (111) surfaces.  相似文献   

9.
《Surface science》1986,175(1):L675-L680
Chemisorption of H2 and CO was studied on stoichiometric and defective TiO2(110) surfaces by means of changes in surface conductivity, work function, XPS, AES, LEED and ELS. Defective surfaces were prepared by thermal pretreatment under thermodynamically controlled conditions and by evaporation of excess Ti. The results are discussed in a modified charge transfer model in terms of partial charges and dipole moments formally attributed to adsorption complexes.  相似文献   

10.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

11.
Oxygen adsorption on the LaB6(100), (110) and (111) clean surfaces has been studied by means of UPS, XPS and LEED. The results on oxygen adsorption will be discussed on the basis of the structurs and the electronic states on the LaB6(100), (110) and (111) clean surfaces. The surface states on LaB6(110) disappear at the oxygen exposure of 0.4 L where a c(2 × 2) LEED pattern disappears and a (1 × 1) LEED pattern appears. The work function on LaB6(110) is increased to ~3.8 eV by an oxygen exposure of ~2 L. The surface states on LaB6(111) disappear at an oxygen exposure of ~2 L where the work function has a maximum value of ~4.4 eV. Oxygen is adsorbed on the surface boron atoms of LaB6(111) until an exposure of ~2 L. Above this exposure, oxygen is adsorbed on another site to lower the work function from ~4.4 to ~3.8 eV until an oxygen exposure of ~100L. The initial sticking coefficient on LaB6(110) has the highest value of ~1 among the (100), (110) and (111) surfaces. The (100) surface is most stable to oxygen among these surfaces. It is suggested that the dangling bonds of boron atoms play an important role in oxygen adsorption on the LaB6 surfaces.  相似文献   

12.
At elevated temperatures equilibria of surface segregation X (dissolved) = X (adsorbed) have been studied for the nonmetal atoms X = C, N and S. Iron single crystals with (100)orientation have been doped with different concentrations of solute atoms (in the range about 10–100 wt ppm). The samples were introduced into the UHV chamber, cleaned and then heated to temperatures in the α-solid solution range. The surface concentration of the segregated nonmetal atoms was observed by AES for different bulk concentrations in dependence of the temperature. The LEED pattern was also observed during segregation equilibrium at temperatures up to about 750° C. The LEED patterns indicate a c(2 × 2) structure for carbon and nitrogen as well as for sulfur. The temperature dependence of the surface concentration for carbon on Fe(100) can be described by a Langmuir-McLean equation, an average segregation enthalpy of ?85 kJ/mol°C is obtained. Since N2 desorption occurs the nitrogen segregation is in virtual equilibrium only at temperatures <500°C. The equilibrium surface concentration of sulfur on α-iron is virtually independent of the solute concentration and the temperature: there is always a saturated layer of sulfur on the (100) faces, even at small bulk concentrations. Since the thermodynamic activity of the nonmetal atoms is well defined in the segregation studies (except nitrogen at higher temperatures) , the results can be correlated with studies in gas atmospheres at atmospheric pressure. The relations to the kinetics of the carburization and the nitrogenation of iron are discussed and the influence of sulfur on these reactions.  相似文献   

13.
Segregated carbon on the Fe(100) surface has been studied by means of X-rayand ultraviolet photoelectron (XPS, UPS), Auger electron (AES) and electron energy loss spectroscopy (ELS). For comparison, the surfaces of polycrystalline graphite and of iron carbides stabilized by chromium or manganese additions have been investigated. On the iron surface, carbon exists as a chemisorbed state or graphitic multilayer. The two states exhibit different energy positions in XPS, and are different in energy positions and lineshapes in AES and ELS. During the transition of graphitic carbon to chemisorbed carbon on Fe(100) a novel coverage-dependent Auger feature is reported. The spectra of graphitic carbon on the iron surface always coincide with those of solid graphite. The carbon Auger transitions of chemisorbed carbon and of iron carbides exhibit very similar lineshapes, but the energy positions of both states differ in AES as well as XPS.  相似文献   

14.
The growing mode of SnO overlayers deposited on SiO2 has been studied by ISS and XPS. This study has shown that SnO spreads on the surface of SiO2. The oxidation state of tin under different experimental conditions of preparation has been characterized by XPS and ELS and a procedure has been found to produce pure SnO. For comparison, SnO has been evaporated on highly oriented pyrolytic graphite (HOPG). In this case, independent of the deposited amount of SnO, XPS and ELS did not show any significant difference in the photoemission and loss features of this material as a function of coverage (i.e. there are no size effects). On the contrary, at low coverages of SnO deposited on SiO2 XPS showed a shift of 1 eV in the BE of the Sn 3d5/2 peak another of 1.7 eV in the values of the Auger parameter with respect to the values found for the bulk material. These shifts, very common on deposited metal particles, have been previously reported by us for TiO2/SiO2, and are tentatively attributed to t of the interaction of small deposits of SnO with the surface of SiO2. The characterization by ELS and valence band photoemission of SnO completes the set of results reported in this paper.  相似文献   

15.
The adsorption of oxygen on a (110)Ag surface is investigated by means of Auger electron spectroscopy, LEED and low energy helium ion scattering (IS). With LEED two ordered structures, i.e. (3×1) and (2×1) were observed at oxygen exposures of 1700 L and 7000 L respectively. The oxygen signal observed by AES and IS increases monotonically with oxygen exposure. The signals can be related to absolute coverage by comparison with Δφ measurements and by the use of the LEED data. With this calibration and with theoretical scattering cross-sections the IS measurements allow the position of the adsorbed oxygen to be estimated. The observation of a strong azimuthal anisotropy of the IS signal, e.g. a large oxygen signal if the plane of scattering is parallel to the [110] direction and a relatively small oxygen signal in the [100] direction, leads to the conclusion that the oxygen is adsorbed in a bridge position between two Ag atoms of the [110] surface channels, its centre being slightly below the centres of the Ag atoms.  相似文献   

16.
Surface segregation of Sn in Cu is measured at (111) and (100) surfaces by means of AES and LEED. In the case of at temperature measurements and no cosegregation of impurities occurring, equilibrium segregation is accomplished for Sn bulk concentrations between 40 and 4300 at ppm and temperatures of 800 to 1230 K. The maximum segregation level of Sn corresponds to a (√3 × √3)R30° structure for the (111) surface and a p(2 × 2) structure for the (100) surface. For theoretical analysis, the Langmuir-McLean equation has to be modified. No difference in segregation enthalpies for both surface orientations is found within the experimental error. The mean segregation enthalpy is determined to ΔH = ?(53 ± 5) kJ/g-atom.  相似文献   

17.
18.
Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and work function (Kelvin probe) measurements have been used to study the initial interaction of clean Al(111), (100) and (110) surfaces with oxygen at room temperature. The oxidation process was found to be surface orientation dependent, but a common feature has been always observed on the three low-index surfaces: they show two distinct phases, i.e. a chemisorbed phase followed then by an oxidized phase. From analysis of AES, LEED and Kelvin probe results, an adsorption mechanism of O on Al for each surface orientation is proposed.  相似文献   

19.
The properties of the systems formed on deposition of Ni atoms on the (111) surface of a MgO film of thickness equal to six monomolecular layers grown on a Mo(110) crystal face and the adsorption of NO nitrogen oxide molecules to the system surface have been studied by methods of electron spectroscopy (AES, XPES, LEED, LEIBSS) and reflective infrared absorption spectroscopy. On deposition of Ni atoms on the surface of MgO at a substrate temperature of 600 K, three-dimensional islands of Ni are formed. The subsequent adsorption of NO results in molecule dissociation even at 110 K. The efficiency of this process depends on the morphology of the Ni layer.  相似文献   

20.
LEED, AES, UPS and XPS were used to study submonolayer coverages of potassium on Fe(110). At room temperature the maximum potassium coverage is characterized by a LEED superstructure. This LEED pattern is interpreted as being due to a hexagonal close-packed K layer on Fe(110), resulting in a maximum atom density of 5.3 × 1014 cm?2, i.e.θ k = 0.31. The work function change and the shift of the K(2p) and K(3p) core levels with potassium coverage indicate a charge transfer from potassium to iron at low potassium coverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号