首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic-scale computer simulation is used to study the interaction between a vacancy and a cluster of self-interstitial atoms in metals with hcp, fcc and bcc crystal structure: α-zirconium, copper and α-iron. Effects of cluster size, atomic structure, dislocation nature of the cluster side and temperature are investigated. A vacancy can recombine with any interstitial in small clusters and this does not affect cluster mobility. With increasing sizes clusters develop dislocation character and their interaction with vacancies depends on whether the cluster sides dissociate into partial dislocations. A vacancy recombines only on undissociated sides and corners created with undissociated segments. Vacancies inside the cluster perimeter do not recombine but restrict cluster mobility. Temperature enhances recombination by either increasing the number of recombination sites or assisting vacancy diffusion towards such sites. The results are discussed with relevance to differences in irradiation microstructure evolution of bcc, fcc and hcp metals and higher level theoretical modelling techniques.  相似文献   

2.
张凤春  李春福  文平  罗强  冉曾令 《物理学报》2014,63(22):227101-227101
采用基于密度泛函理论的第一性原理方法, 研究了不同摩尔比下H在α-Fe和γ-Fe晶格中的间隙占位情况, 计算了稳态晶体的总能量、结合能、溶解热、电子态密度、电荷差分密度和电荷布居, 分析了间隙H原子和Fe晶格之间的相互作用, 讨论了H溶解对α-Fe和γ -Fe晶体电子结构的影响. 结果表明: H溶解引起α-Fe和γ-Fe晶体点阵晶格畸变, 体积膨胀率随着溶氢量的增加而增加. 从能量角度分析发现, H优先占据α-Fe的四面体间隙位, 而在γ -Fe中优先 占据八面体间隙位. 态密度、电荷差分密度以及电荷布居分析发现, 间隙H原子与Fe晶格的相互作用仅由H的1s轨道电子和Fe的4s轨道电子所贡献, 二者作用力相对较弱, 这是造成H在Fe晶格中固溶度较低的主要原因之一. 关键词: 金属Fe 间隙H原子 第一性原理 溶解热  相似文献   

3.
利用密度泛函理论在B3LYP/6-311++G(d , p)基组水平上对C5H5N5·(H2O)m (m=1~3)进行了优化与振动频率计算,得到了团簇的六种稳定结构. 应用AIM程序计算了三种最稳定结构的氢键临界点的拓扑参数,结果表明,O—H…N氢键的形成使得O—H之间电子密度减小,伸缩振动频率减小,产生了红移;N—H…O氢键的形成使得N—H之间的电子密度减小,键的强度变弱,伸缩振动频率变小,发生了红移. 利用veda4软件对团簇C5H5N5·(H2O)m (m=0~3)的红外光谱的振动频率进行模式指认,并对部分振动频率进行了比较.  相似文献   

4.
Hydrogen clusters are formed by packing H2 molecules. A structural characterization of (H2)N clusters up to N=35 has been carried out at zero temperature by using density functional theory. The binding between the hydrogen molecules is very weak and the cluster growth reminds that of the inert gas clusters. An icosahedron is obtained for (H2)13. For clusters larger than (H2)13 several growth models have been compared. The binding energy indicates specially stable clusters for some particular sizes. The magic numbers can be related to Raman spectroscopy experiments, where the intensity of the Raman signal serves to assign enhanced abundance to clusters with N≈13,32,55, which coincide with some of the most stable clusters obtained in the present study. In addition, comparison of theory and experiment suggests that clusters with N smaller than 27 are liquid. The photoabsorption spectra have been calculated using time-dependent density functional theory. Those spectra can be interpreted as a widening of the absorption peaks of the H2 molecule due to the various environments experienced by different molecules in the same cluster.  相似文献   

5.
饶建平  欧阳楚英  雷敏生  江风益 《物理学报》2012,61(4):47105-047105
应用第一性原理计算方法, 研究了H在金属Nb体心立方晶格中的间隙占位情况, 并讨论了占位能和间隙大小的关系. 分析了H在间隙位和Nb金属晶格的相互作用, 并讨论了相互作用对电子结构的影响. 结果表明: 除了间隙大小直接影响溶解能的大小之外, H的1s电子和Nb的3d电子有比较强的成键作用, 也是导致H在Nb晶格中溶解能较低的一个重要原因. 估算了500 ℃ 下H在Nb晶格中的扩散系数大约为7.8× 10-9 m2/s, 和实验结果基本符合.  相似文献   

6.
运用密度泛函理论(DFT)方法,研究了异构体C60O[6,6]与C60O[5,6]之间的重排反应机理。结果显示: 它们之间的反应路径是经过一个过渡态没有中间体的一步反应。C60O[6,6] 转化成C60O[5,6]的反应能垒是42.7 kcal*mol-1,在反方向,C60O[5,6]转化成C60O[6,6]的反应能垒是47.3 kcal*mol-1,同时,扫描出氧原子在富勒烯C60(Ih)表面的势能面(PEC),以详细显示异构体C60O[6,6]与C60O[5,6]之间的重排反应机理。  相似文献   

7.
8.
运用密度泛函理论(DFT)方法,研究了异构体C60O[6,6]与C60O[5,6]之间的重排反应机理。结果显示: 它们之间的反应路径是经过一个过渡态没有中间体的一步反应。C60O[6,6] 转化成C60O[5,6]的反应能垒是42.7 kcal*mol-1,在反方向,C60O[5,6]转化成C60O[6,6]的反应能垒是47.3 kcal*mol-1,同时,扫描出氧原子在富勒烯C60(Ih)表面的势能面(PEC),以详细显示异构体C60O[6,6]与C60O[5,6]之间的重排反应机理。  相似文献   

9.
The chemisorption of H on clusters representing the (100) surface of Li bcc lattice has been studied with ab initio SCF and CI methods and an embedding theory based on orbital localization (Whitten and Pakkanen, Phys. Rev. B21 (1980) 4357). The results suggest that a convergence of the properties for adsorption on cluster models is almost reached when all metal atoms involved in the adsorption are surrounded by their neighbors.  相似文献   

10.
The behavior of a Pd nanocluster on the rutile TiO2 (110) surface has been analyzed by extensive first principles molecular dynamics simulations between 100 K and 1073 K. Calculations predict a steep change in the morphological and electronic cluster structure around 800 K in excellent agreement with previous experimental evidence. At low temperature, the cluster geometry is mainly controlled by the substrate structure; however, upon the transition temperature, the cluster-substrate interaction decreases appreciably, and the cluster adopts a geometry more stable in vacuum and becomes metallic. These results illustrate at an atomistic level the influence of temperature on the geometrical and electronic properties of oxide-supported clusters.  相似文献   

11.
A Hartree-Fock SCF ab initio investigation is presented in which the hydrogen chemisorption at high coverage on the beryllium (0001) surface is simulated as a symmetrical interaction of two H monolayers with both sides of the Be film or as a nonsymmetrical model with one H monolayer interacting with one surface of a Be film. Relatively strong chemisorption bonds are found at two (“open” and “eclipsed” positions) of the three high-symmetry chemisorption sites. The results of this investigation are compared with the results obtained with the approaches based on cluster models  相似文献   

12.
13.
Neutral ammonia clusters (NH3)m are photo-excited to the electronic state by a deep UV femtosecond laser pump pulse. Within a few hundred femtoseconds a significant fraction of the clusters rearrange to form an H-transfer state (NH3)m-2NH4(3s)NH2 with the subunit NH4 in its 3s electronic ground state. This state is then electronically excited by a time-delayed infrared control pulse of variable wavelength. Finally, a third (probe) pulse in the UV ionizes the clusters for detection. The lifetime of the excited (NH3)m-2NH4(3p)NH2 states is found to vary between 2.7 and 0.13 ps depending on cluster size and excitation energy. It increases drastically upon deuteration. The corresponding cluster size-dependent photoelectron spectra allow us to disentangle the underlying energetics of the excitation and ionization process and reveal additional processes, such as nonresonant ionization or dissociative ionization. The experimental findings suggest that the excited H-transfer ammonia complexes with m > 2 are deactivated by an internal conversion process back to the electronically lowest H-transfer state followed by fast dissociation. Received 22 September 2001 and Received in final form 31 January 2002  相似文献   

14.
15.
We start with a Galilei-invariant symplectic model of two charged particles with spin and magnetic moment in interaction, which could serve as a model for the (classical) hydrogen atom. To this model we apply two different versions of geometric quantization and we obtain a hamiltonian operator which is (apart from some numerical constants) the well-known hamiltonian for the hydrogen atom, including spin-orbit coupling (fine-structure) and spin-spin interaction (hyperfine-structure).  相似文献   

16.
17.
Metal hydrides are used for electrochemical or gaseous storage of hydrogen because considerable amounts of hydrogen are reversibly absorbed and desorbed at interstitial sites. Palladium is often used as a model system. Nanophase material is of interest because properties related to the hydrogen absorption are size dependent. In this study, clusters from the size of 55 to 1415 atoms are investigated and compared with bulk Pd. It turns out that not only the amount of hydrogen per palladium that can be intercalated changes but also kinetics and chemical potentials are dependent on the cluster size. The clusters used for this study were chemically synthesised and stabilised by a ligand shell. Received 9 October 1998 and Received in final form 10 May 1999  相似文献   

18.
We study the behavior of a hydrogen atom adsorbed on aluminum nanowire based on density functional theory. In this study, we focus on the electronic structure, potential energy surface (PES), and quantum mechanical effects on hydrogen and deuterium atoms. The activation energy of the diffusion of a hydrogen atom to the axis direction is derived as 0.19 eV from PES calculations. The probability density, which is calculated by including quantum effects, is localized on an aluminum top site in both cases of hydrogen and deuterium atoms of the ground state. In addition, some excited states are distributed between aluminum atoms on the surface of the nanowire. The energy difference between the ground state and these excited states are below 0.1 eV, which is much smaller than the activation energy of PES calculations. Thus using these excited states, hydrogen and deuterium atoms may move to the axial direction easily. We also discuss the electronic structure of the nanowire surface using quantum energy density defined by one of the authors.  相似文献   

19.
A genetic algorithm has been used to perform a global sampling of the potential energy surface in the search for the lowest-energy structures of unsupported 38-atom Cu–Pt clusters. Structural details of bimetallic Cu–Pt nanoparticles are analyzed as a function of their chemical composition and the parameters of the Gupta potential, which is used to mimic the interatomic interactions. The symmetrical weighting of all parameters used in this work strongly influences the chemical ordering patterns and, consequently, cluster morphologies. The most stable structures are those corresponding to potentials weighted toward Pt characteristics, leading to Cu–Pt mixing for a weighting factor of 0.7. This reproduces density functional theory (DFT) results for Cu–Pt clusters of this size. For several weighting factor values, the Cu30Pt8 cluster exhibits slightly higher relative stability. The copper-rich Cu32Pt6 cluster was reoptimized at the DFT level to validate the reliability of the empirical approach, which predicts a Pt@Cu core-shell segregated cluster. A general increase of interatomic distances is observed in the DFT calculations, which is greater in the Pt core. After cluster relaxation, structural changes are identified through the pair distribution function. For the majority of weighting factors and compositions, the truncated octahedron geometry is energetically preferred at the Gupta potential level of theory.  相似文献   

20.
In this paper we adopt a molecular cluster approach to study the interaction of a hydrogen atom with a (100) surface of solid lithium metal. In this study, the spin-unrestricted Hartree-Fock equation is solved for the molecular cluster. We also solve for the potential energy surface of the LiH molecule and the Li2 molecule. We find that the essential features of the hydrogen surface interaction can be understood in terms of the molecule two body interactions. We also find that the hydrogen atom sits below the surface of the Li metal rather than above the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号