首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
《Surface science》1986,176(3):635-652
Oxygen chemisorption and dissociation on Cr(110) at 120 K have been studied using high resolution electron energy loss spectroscopy (HREELS), electron stimulated desorption ion angular distribution (ESDIAD), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Dissociative adsorption dominates although vibrational and stimulated desorption data provide evidence for a coexisting minority molecular binding state. An O2(ads) vibrational frequency of 1020 cm−1 and a six beam ESDIAD pattern are suggestive of super-oxo O2(ads) bonding at six local sites each with the O-O molecular axis tilted away from the surface normal. These results are compared with data for chemisorbed oxygen on other transition metal surfaces.  相似文献   

2.
High resolution electron energy loss spectroscopy (EELS), thermal desorption mass spectrometry (TDMS) and low energy electron diffraction (LEED) have been used to investigate the molecular chemisorption of N2 on Ru(001) at 75 K and 95 K. Adsorption at 95 K produces a single chemisorbed state, and, at saturation, a (√3x√3) R30° LEED pattern is observed. Adsorption at 75 K produces an additional chemisorbed state of lower binding energy, and the probability of adsorption increases by a factor of two from its zero coverage value when the second chemisorbed state begins to populate. EEL spectra recorded for all coverages at 75 K show only two dipolar modes — ν(RuN2) at 280–300 cm?1 and ν(NN) at 2200–2250 cm?1 — indicating adsorption at on-top sites with the axis of the molecular standing perpendicular to the surface. The intensities of these loss features increase and ν(NN) decreases with increasing surface coverage of both chemisorbed states.  相似文献   

3.
The adsorption of H2O on the surface of a single-crystal sphere of silver with exposed (111), (100) and (112) facets has been examined using ESDIAD (electron stimulated desorption ion angular distribution), LEED (low energy electron diffraction) and TDS (thermal desorption spectroscopy). The purpose of the study was (a) to examine the influence of substrate geometry for adsorption of H2O on a metal surface for which the adsorbate-substrate interaction is weak, and (b) to study the influence of a surface impurity, oxygen, on the surface chemistry and local bonding structure of H2O on Ag. We have found no evidence for either long-range or short-range local bonding order for adsorbed H2O at 80 K on any of the surfaces studied. This appears to be a consequence, in part, of the lattice mismatch between the Ag crystal structure and the two-dimensional H2O ice crystal structure. Adsorbed H2O reacts with preadsorbed oxygen to form OH species which are bonded with the molecular axis perpendicular to Ag(111) and (100) but “inclined” on (112) surfaces, as identified using ESDIAD. The “inclined” OH species are associated with atomic steps on the (112) surface.  相似文献   

4.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

5.
The interaction of Cs and O2 on MoS2(0001) has been studied both in the alternate adsorption and the codeposition mode by LEED, AES, TDS and WF measurements at 170 and 300 K. Oxygen does not interact with Cs when θCs?0.04 at 300 K or θCs?0.08 at 170 K, where Cs is known to adsorb as strongly ionized, individual adatoms. The interaction at higher θCs, where Cs is known to form clusters on MoS2(0001), leads to clusters of a Cs/O complex characterized by a Cs(563 eV)/O(512 eV) Auger peak ratio of 1.1–1.3. The minimum WF is 2.1 eV at 300 and 170 K upon alternate adsorption, and 1.7 eV at both T upon codeposition. Upon heating, oxygen and Cs desorb independently, as no oxide desorption is observed. The Cs TDS spectrum is shifted to lower T in the presence of oxygen and a new desorption peak appears at ~ 880 K. The differences in the Cs/O interaction between MoS2(0001) and other semiconductors and metals are attributed to the Cs clustering and the inertness of MoS2(0001) to O2 adsorption.  相似文献   

6.
The chemisorption of small molecules (CO, CO2, C2H2, C2H4, H2 and NH3) has been studied on the clean Fe(110) and (111) crystal faces by low-energy electron diffraction (LEED) and thermal desorption. C2H4 and C2H2 yield the same sequence of surface structures that change with temperature and crystal orientation. CO and CO2 chemisorption similarly results in the formation of the same types of surface structures that change with surface temperature and crystal orientation. Ammonia forms several ordered surface structures on both iron crystal faces. All of the molecules decompose as a function of temperature on the iron surfaces as indicated by the Auger and thermal desorption spectra.  相似文献   

7.
The adsorption of H2O on Al(111) has been studied by ESDIAD (electron stimulated desorption ion angular distributions), LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and thermal desorption in the temperature range 80–700 K. At 80 K, H2O is adsorbed predominantly in molecular form, and the ESDIAD patterns indicate that bonding occurs through the O atom, with the molecular axis tilted away from the surface normal. Some of the H2O adsorbed at 80 K on clean Al(111) can be desorbed in molecular form, but a considerable fraction dissociates upon heating into OHads and hydrogen, which leaves the surface as H2. Following adsorption of H2O onto oxygen-precovered Al(111), additional OHads is formed upon heating (perhaps via a hydrogen abstraction reaction), and H2 desorbs at temperatures considerably higher than that seen for H2O on clean Al(111). The general behavior of H2O adsorption on clean and oxygen-precovered Al(111) (θO ? monolayer) is rather similar at low temperature, but much higher reactivity for dissociative adsorption of H2O to form OH adsis noted on the oxygen-dosed surface around room temperature.  相似文献   

8.
The K absorption-edge spectra of the ligand chlorine ion in square-planar complex compounds cis- and trans-[Pt(NH3)2Cl2], trans-[Pd(NH3)2Cl2], and (NH4)2PdCl4 are reported and discussed in connection with the chlorine K absorption spectra of K2PtCl4 and K2PdCl4, reported previously. The observed chemical shift of a white line at the absorption threshold is interpreted in terms of the difference of the ligand-field splitting of electronic states for metal ions. The white line is attributed to the electronic transition from the Cl? ls level to the lowest unoccupied antibonding molecular orbital (MO), which is specified by a MOb1g1) in the square-planar complex with D4h symmetry. The other absorption structures are regarded as continuum “shape resonances” of the outgoing electron trapped by the cage of the surrounding atoms. The effect of geometrical isomerism is found in the chlorine K absorption spectra of cis- and trans-[Pt(NH3)2Cl2].  相似文献   

9.
《Surface science》1996,366(1):99-106
Electron-stimulated desorption ion angular distribution (ESDIAD) and LEED were used to investigate the structure changes at the TiO2(100) surface. The angular distribution of O+ ions from the (1 × 3) reconstructed surface is consistent with the microfacet model proposed from X-ray diffraction and STM studies. The (1 × 3) reconstructed surface can be transferred back to the (1 × 1) surface after annealing at 950 K in oxygen, through a stage where the surface consists of (1 × 1) and (1 × 3) domains which are smaller than the coherent width of the LEED electron beam. Evidence for surface reconstruction on the (1 × 1) surface is also found.  相似文献   

10.
H. Niehus 《Surface science》1979,87(2):561-580
Oxygen and carbon monoxide adsorption on clean W(111) surfaces have been studied by angular resolved ESD emission (ESDIAD). In addition, the specimen could be characterized in situ with AES and LEED. Adsorption was performed at room temperature. The electron stimulated desorption yielded O+ ions from the two investigated adsorption layers. Upon oxygen adsorption followed by subsequent annealing at least eight different ESDIAD patterns have been obtained. However, a convincing interpretation on the basis of the surface geometry can only be presented for three patterns produced without annealing as well as for one pattern at a very high annealing temperature. The difficulties are a consequence of complex structure changes which the surface undergoes in the intermediate annealing temperature range. This may influence the little known neutralisation probability of the desorbing ions. In this special case ESDIAD probably reflects in contrast to LEED a picture of some specific adsorption sites (minority species) and therefore, no clear correlation of the two techniques can be seen. ESDIAD from carbon monoxide shows four different patterns and supports the model of linear bonded CO molecules at room temperature with oxygen in the “standing up” position. At T > 900 K, CO starts to dissociate and results in similar ESDIAD patterns as obtained from O2 adsorption.  相似文献   

11.
The coadsorption of PH3 with H2, D2, O2 and H2O on Rh(100) has been studied using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The adsorption and molecular desorption of PH3 is not affected by preadsorbed H2, D2 and O2. Preadsorbed PH3 blocks H2 desorption sites while postdosed PH3 displaces H2 (D21) from the Rh(100). When D2 and PH3 are coadsorbed, no D appears in desorbed phosphine. Preadsorbed O2 reduces the amount of H2 desorption (from PH3 decomposition) and increases the H2 desorption temperature. There is also some reaction between O(a) and H(a) to form water. Preexposure to H2O decreases the extent of PH3 adsorption and of PH3 decomposition.  相似文献   

12.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

13.
The ESDIAD method (electron stimulated desorption ion angular distributions) has been combined with LEED (low energy electron diffraction) in a study of the adsorption of NO on Ni(111). For adsorption at 80 K, NO appears to be bonded with its molecular axis perpendicular to the Ni(111) surface at all coverages. Heating the 80 K layer leads to a striking structural change which we interpret as the formation of inclined or bent NO in the range 120 ? T ? 250 K. Upon adsorption at 150 K, only the bent form of NO is present at low coverages; at higher coverages at 150 K, the perpendicular form appears, in agreement with recent electron energy loss spectroscopy (EELS) data of Lehwald, Yates, and Ibach. When NO is coadsorbed with p(2 × 2) oxygen, the perpendicular form of NO dominates at all coverages and temperatures studied. Dissociated NO adsorbed at steps and defect sites on Ni(111) produces a welldefined hexagonal ESDIAD pattern.  相似文献   

14.
The magnetic susceptibility of the layered compounds (CH2)3(NH3)2FeCl2Br2 and (CH2)6(NH3)2FeCl2Br2 has been measured in the range 80 < T < 300 K. The results follow a Curie-Weiss behavior in the range 120 < T < 300 K but are field dependent for T < 120 K. The results are interpreted in terms of a two-dimensional antiferromagnetic interaction which is canted. A comparison with the corresponding pure chloride compounds is given.  相似文献   

15.
The X-ray induced desorption of H+ ions from NH3 layers adsorbed at T = 90 K on Ni(110) has been compared to the corresponding total electron yield (TY) in the photon energy range 390 to 900 eV. The H+ yield exhibits a jump at the N K-edge and the Ni L-edge which inversely varies with the NH3 layer thickness. The H+ Ni L-edge jump is closely correlated to the TY jump. Both vanish for the saturated NH3 multilayer, indicating that the observed Ni L-edge jump in the H+ yield is exclusively due to X-ray induced electron stimulated desorption (XESD). At the N K-edge, the near edge absorption fine structure of the H+ yield and TY of the saturated NH3 multilayer are distinctly different. This is interpreted as the H + yield being the superposition of direct photon stimulated ion desorption (PSID) and XESD. Based on the observed variation of the H+ yield near edge fine structure with varying NH3 layer thickness, a deconvolution of the PSID and XESD contributions is used to derive the relative contribution of PSID versus XESD to be 40% versus 60%, respectively. The relevance of this result for future PSID-SEXAFS studies is discussed. For monolayer NH3 on Ni(110) the polarization dependence of the N K-edge fine structure in the N(KVV) Auger yield indicates that the symmetry axis of NH3, is perpendicular to the surface.  相似文献   

16.
The chemisorption of H2, O2, CO, CO2, NO, C2H2, C2H4 and C has been studied on the clean stepped Rh(755) and (331) surfaces. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) were used to determine the size and orientation of the unit cells, desorption temperatures and decomposition characteristics for each adsorbate. All of the molecules studied readily chemisorbed on both stepped surfaces and several ordered surface structures were observed. The LEED patterns seen on the (755) surface were due to the formation of surface structures on the (111) terraces, while on the (331) surface the step periodicity played an important role in the determination of the unit cells of the observed structures. When heated in O2 or C2H4 the (331) surface was more stable than the (755) surface which readily formed (111) and (100) facets. In the CO and CO2 TDS spectra a peak due to dissociated CO was observed on both surfaces. NO adsorption was dissociative at low exposures and associative at high exposures. C2H4 and C2H2 had similar adsorption and desorption properties and it is likely that the same adsorbed species was formed by both molecules.  相似文献   

17.
The adsorption of sulphur on the Pd(111) surface is studied by low energy electron diffraction (LEED). Four different adsorbate structures are identified. LEED intensity analyses are performed for the clean surface and for the ordered initial adlayer, i.e. the (3 × 3)R30° S adsorption phase. It is found that the sulphur atoms occupy threefold-symmetric hollow sites, with a SPd chemisorption bond length of 0.222±0.003 nm.  相似文献   

18.
Adsorption of Cs on basal planes of MoS2 has been studied with LEED, Auger and work function measurements. LEED observations show that in the 200–300 K range Cs is adsorbed as amorphous layers on MoS2. Correlation of Auger and work function measurements indicates that the work function, sticking coefficient and the maximum density of Cs that can be deposited on the MoS2 surface depend strongly on substrate temperature. Cesium is deposited on MoS2 in two adsorption states. Although MoS2 is extremely inert to O2 adsorption, the presence of Cs causes a drastic increase in the adsorption of oxygen which in turn increases the amount of Cs that can be deposited on the surface. Lastly, it has been found that part of the Cs adatoms are diffused into the bulk of MoS2.  相似文献   

19.
The nonpolar (1010), stepped (4041) and (5051), and the polar (0001) surfaces of ZnO were prepared. Stable unreconstructed nonpolar and stepped surfaces were obtained. LEED analyses showed that the step height and the step width of the stepped surfaces were similar to the theoretical values. The polar surface showed a 1 × 1 LEED pattern of six-fold symmetry after annealing at 500°C, and evidence of a more complicated pattern at 300–400°C. Temperature programmed desorption of CO resulted in the desorption of CO from the stepped and the polar surfaces. However, desorption of CO2 was observed from the stoichiometric nonpolar surface, and no desorption from the reduced nonpolar surface. CO2 was also observed by interacting CO with all surfaces at elevated temperatures. A total of four temperature programmed desorption peaks of CO2, α, β, γ, and δ were observed. The α and β peaks were observed on the nonpolar and the stepped surfaces, and the γ peak was observed on the polar surface. The α peak was assigned to adsorption on a surface ZnO pair, and the β peak was assigned to adsorption on an anion vacancy or a step. While adsorbed water enhanced the β, preadsorbed methanol reduced it. O2 adsorption was similar on the nonpolar and the stepped surfaces, but was weak on the polar surface.  相似文献   

20.
Ammonia decomposition at Ni(110) has been identified to proceed via NH3(ad) → NH2(ad) → NH(ad) → N + H. The decomposition activation of NH is determined to be 47 kcal/mol, suggesting an amazing stability of the NiNH bond. Decomposition of NH2 occurs up from about 350 K; no kinetic data can be given yet. NH3 decomposition is found to proceed slower than NH3 desorption at least below 300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号