首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A. Spitzer  H. Lüth 《Surface science》1982,120(2):376-388
The water adsorption on clean and oxygen precovered Cu(110) surfaces is studied by means of UPS, LEED, work function measurements and ELS. At 90 K on the clean surface molecular water adsorption is indicated by UPS. The H2O molecules are bonded at the oxygen end and the H-O-H angle is increased as compared with the free molecule. In the temperature range between 90 and 300 K distorted H2O molecules and adsorbed hydroxyl species (OH) are detected, which are desorbed at room temperature. On an oxygen covered surface hydroxyl groups are formed by dissociation of adsorbed water molecules at a lower temperature than on the clean surface. Multilayers of condensed water are found below 140 K in both cases.  相似文献   

2.
The adsorption and reaction of H2O on clean and oxygen precovered Ni(110) surfaces was studied by XPS from 100 to 520 K. At low temperature (T<150 K), a multilayer adsorption of H2O on the clean surface with nearly constant sticking coefficient was observed. The O 1s binding energy shifted with coverage from 533.5 to 534.4 eV. H2O adsorption on an oxygen precovered Ni(110) surface in the temperature range from 150 to 300 K leads to an O 1s double peak with maxima at 531.0 and 532.6 eV for T=150 K (530.8 and 532.8 eV at 300 K), proposed to be due to hydrogen bonded Oads… HOH species on the surface. For T>350 K, only one sharp peak at 530.0 eV binding energy was detected, due to a dissociation of H2O into Oads and H2. The s-shaped O 1s intensity-exposure curves are discussed on the basis of an autocatalytic process with a temperature dependent precursor state.  相似文献   

3.
The adsorption and reaction of water on clean and oxygen covered Ag(110) surfaces has been studied with high resolution electron energy loss (EELS), temperature programmed desorption (TPD), and X-ray photoelectron (XPS) spectroscopy. Non-dissociative adsorption of water was observed on both surfaces at 100 K. The vibrational spectra of these adsorbates at 100 K compared favorably to infrared absorption spectra of ice Ih. Both surfaces exhibited a desorption state at 170 K representative of multilayer H2O desorption. Desorption states due to hydrogen-bonded and non-hydrogen-bonded water molecules at 200 and 240 K, respectively, were observed from the surface predosed with oxygen. EEL spectra of the 240 K state showed features at 550 and 840 cm?1 which were assigned to restricted rotations of the adsorbed molecule. The reaction of adsorbed H2O with pre-adsorbed oxygen to produce adsorbed hydroxyl groups was observed by EELS in the temperature range 205 to 255 K. The adsorbed hydroxyl groups recombined at 320 K to yield both a TPD water peak at 320 K and adsorbed atomic oxygen. XPS results indicated that water reacted completely with adsorbed oxygen to form OH with no residual atomic oxygen. Solvation between hydrogen-bonded H2O molecules and hydroxyl groups is proposed to account for the results of this work and earlier work showing complete isotopic exchange between H216O(a) and 18O(a).  相似文献   

4.
《Surface science》1987,182(3):499-520
Photoelectron spectroscopy (UPS), thermal desorption spectroscopy (TDS), isotope exchange experiments, work function change (δφ) and LEED were used to study the adsorption and dissociation behavior of H2O on a clean and oxygen precovered stepped Ni(s)[12(111) × (111)] surface. On the clean Ni(111) terraces fractional monolayers of H2O are adsorbed weakly in a single adsorption state with a desorption peak temperature of 180 K, just above that of the ice multilayer desorption peak (Tm = 155 K). In the angular resolved UPS spectra three H2O induced emission maxima at 6.2, 8.5 and 12.3 eV below EF were found for θ ≈ 0.5. Angular and polarization dependent UPS measurements show that the C2v symmetry of the H2O gas-phase molecule is not conserved for H2O(ad) on Ni(s)(111). Although the Δφ suggest a bonding of H2O to Ni via the negative end of the H2O dipole, the O atom, no hints for a preferred orientation of the H2O molecular axes were found in the UPS, neither for the existence of water dimers nor for a long range ordered H2O bilayer. These results give evidence that the molecular H2O axis is more or less inclined with respect to the surface normal with an azimuthally random distribution. H2O adsorption at step sites of the Ni(s)(111) surface leads in TDS to a desorption maximum at Tm = 225 K; the binding energy of H2O to Ni is enhanced by about 30% compared to H2O adsorbed on the terraces. Oxygen precoverage causes a significant increase of the H2O desorption energy from the Ni(111) terraces by about 50%, suggesting a strong interaction between H2O and O(ad). Work function measurements for H2O+O demonstrate an increase of the effective H2O dipole moment which suggests a reorientation of the H2O dipole in the presence of O(ad), from inclined to a more perpendicular position. Although TDS and Δφ suggest a significant lateral interaction between H2O+O(ad), no changes in the molecular binding energies in UPS and no “isotope exchange” between 18O(ad) and H216O(ad) could be observed. Also, dissociation of H2O could neither be detected on the oxygen precovered Ni(s)(111) nor on the clean terraces.  相似文献   

5.
The interaction of water vapour with clean as well as with oxygen precovered Ni(110) surfaces was studied at 150 and 273 K, using UPS, ΔΦ, TDS, and ELS. The He(I) (He(II)) excited UPS indicate a molecular adsorption of H2O on Ni(110) at 150 K, showing three water-induced peaks at 6.5, 9.5 and 12.2 eV below EF (6.8, 9.4 and 12.7 eV below EF). The dramatic decrease of the Ni d-band intensity at higher exposures, as well as the course of the work function change, demonstrates the formation of H2O multilayers (ice). The observed energy shift of all water-induced UPS peaks relative to the Fermi level (ΔEmax = 1.5 eVat 200 L) with increasing coverage is related to extra-atomic relaxation effects. The activation energies of desorption were estimated as 14.9 and 17.3 kcal/mole. From the ELS measurements we conclude a great sensitivity of H2O for electron beam induced dissociation. At 273 K water adsorbs on Ni(110) only in the presence of oxygen, with two peaks at 5.7 and 9.3 eV below EF (He(II)), being interpreted as due to hydroxyl species (OH)δ? on the surface. A kinetic model for the H2O adsorption on oxygen precovered Ni(110) surfaces is proposed, and verified by a simple Monte Carlo calculation leading to the same dependence of the maximum amount of adsorbed H2O on the oxygen precoverage as revealed by work function measurements. On heating, some of the (OH)δ? recombines and desorbs as H2O at ? 320 K, leaving behind an oxygen covered Ni surface.  相似文献   

6.
Yilin Cao 《Surface science》2006,600(19):4572-4583
To provide information about the chemistry of water on Pd surfaces, we performed density functional slab model studies on water adsorption and decomposition at Pd(1 1 1) surface. We located transition states of a series of elementary steps and calculated activation energies and rate constants with and without quantum tunneling effect included. Water was found to weakly bind to the Pd surface. Co-adsorbed species OH and O that are derivable from H2O stabilize the adsorbed water molecules via formation of hydrogen bonds. On the clean surface, the favorable sites are top and bridge for H2O and OH, respectively. Calculated kinetic parameters indicate that dehydrogenation of water is unlikely on the clean regular Pd(1 1 1) surface. The barrier for the hydrogen abstraction of H2O at the OH covered surface is approximately 0.2-0.3 eV higher than the value at the clean surface. Similar trend is computed for the hydroxyl group dissociation at H2O or O covered surfaces. In contrast, the O-H bond breaking of water on oxygen covered Pd surfaces, H2Oad + Oad → 2OHad, is predicted to be likely with a barrier of ∼0.3 eV. The reverse reaction, 2OHad → H2Oad + Oad, is also found to be very feasible with a barrier of ∼0.1 eV. These results show that on oxygen-covered surfaces production of hydroxyl species is highly likely, supporting previous experimental findings.  相似文献   

7.
The decomposition of methanol on clean and oxygen-precovered CuCl(1 1 1) surface have been studied with the method of density functional theory-generalized gradient approximation (DFT-GGA) and the periodic slab models. The effects of different methanol coverages up to one monolayer are investigated. The activation of the O-H bond of methanol to form the methoxide intermediate, the activation of the C-H bond to form the hydroxymethyl intermediate and the activation of the C-O bond to form methyl are examined. These intermediates can subsequently react to form methoxide, hydroxymethyl, methyl, formaldehyde, formyl, and finally CO on the surface. The chemisorption energies of CH3OH, CH3O, H2COH, CH3, H2CO, HCO, OH and CO at their most favorable adsorption sites are predicted to be −57.9, −235.3, −172.9, −170.5, −67.8, −192.4, −309.5 and −105.7 kJ/mol, respectively. We also confirm that the O-H bond-breaking paths have lower energy barrier, compared to the C-O and C-H bond-breaking paths. However, these reactions need a lower energy barrier when precovered oxygen atoms participate in these reactions.  相似文献   

8.
The adsorption of H2O on clean and K-covered Pt(111) was investigated by utilizing Auger, X-ray and ultra-violet photoemission spectroscopies. The adsorption on Pt(111) at 100–150 K was purely molecular (ice formation) in agreement with previous work. No dissociation of this adsorbed H2O was noted on heating to higher temperatures. On the other hand, adsorption of H2O on Pt(111) + K leads to dissociation and to the formation of OH species which were characterized by a work function increase, an O 1s binding energy of 530.9 eV and UPS peaks at 4.7 and 8.7 eV below the Fermi level. The amount of OH formed was proportional to the K coverage for θK > 0.06 whereas no OH could be detected for θ? 0.06. Dissociation of H2O occurred already at T = 100 K, with a sequential appearance of O 1s peaks at 531 and 533 eV representing OH and adsorbed H2O, respectively. At room temperature and above only the OH species was observed. Annealing of the surface covered with coadsorbed K/OH indicated the high stability of this OH species which could be detected spectroscopically up to 570 K. The adsorption energy of H2O coadsorbed with K and OH on Pt(111) is increased relative to that of H2O on Pt. The work function due to this adsorbed H2O increases whereas it decreases for H2O on Pt(111). The energy shifts of valence and O1s core levels of H2O on Pt + K as deduced from a comparison of gas phase and adsorbate spectra are 2.8–4.2 eV compared to ≈ 1.3–2.3 eV for H2O on Pt (111). This increased relaxation energy shift suggests a charge transfer screening process for H2O on Pt + K possibly involving the unoccupied 4a1 orbital of H2O. The occurrence of this mode of screening would be consistent with the higher adsorption energy of H2O on Pt + K and with its high propensity to dissociate into OH and H.  相似文献   

9.
UV photoemission spectroscopy (UPS) with He I and He II radiation is used to study the interaction of C2H4 with clean and oxygen precovered Cu(110) surfaces at 90 K. On the clean surface only-bonding of the C2H4 molecules is observed whereas preadsorbed oxygen causes a second molecular orbital to be involved in the chemisorption. This result is consistent with the differing behaviour of the work function change during thermal desorption of C2H4.  相似文献   

10.
The adsorption of H2O on Al(111) has been studied by ESDIAD (electron stimulated desorption ion angular distributions), LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and thermal desorption in the temperature range 80–700 K. At 80 K, H2O is adsorbed predominantly in molecular form, and the ESDIAD patterns indicate that bonding occurs through the O atom, with the molecular axis tilted away from the surface normal. Some of the H2O adsorbed at 80 K on clean Al(111) can be desorbed in molecular form, but a considerable fraction dissociates upon heating into OHads and hydrogen, which leaves the surface as H2. Following adsorption of H2O onto oxygen-precovered Al(111), additional OHads is formed upon heating (perhaps via a hydrogen abstraction reaction), and H2 desorbs at temperatures considerably higher than that seen for H2O on clean Al(111). The general behavior of H2O adsorption on clean and oxygen-precovered Al(111) (θO ? monolayer) is rather similar at low temperature, but much higher reactivity for dissociative adsorption of H2O to form OH adsis noted on the oxygen-dosed surface around room temperature.  相似文献   

11.
Adsorption and reactivity of carbon dioxide at the clean and oxygen precovered Ni(110) surface has been studied by means of EELS and LEED. On the clean surface two different types of CO2 molecules have been observed by EELS at 135 K, one being the undisturbed linear configuration. With increasing temperature the linear molecule changes into a different species which precedes dissociation at 220 K into CO and O. EELS and LEED data of the intermediate species support the assumption that it is a bent CO2 anion adsorbed in C2v symmetry with twofold oxygen coordination to the surface. Oxygen preadsorption stabilizes the linear CO2 molecule up to higher temperatures which does not convert into a bent species in this case. Instead, a reaction product of CO2 and O is found and interpreted as a carbonate species.  相似文献   

12.
The surface chemistry of NO and NO2 on clean and oxygen-precovered Pt(1 1 0)-(1 × 2) surfaces were investigated by means of high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At room temperature, NO molecularly adsorbs on Pt(1 1 0), forming linear NO(a) and bridged NO(a). Coverage-dependent repulsive interactions within NO(a) drive the reversible transformation between linear and bridged NO(a). Some NO(a) decomposes upon heating, producing both N2 and N2O. For NO adsorption on the oxygen-precovered surface, repulsive interactions exist between precovered oxygen adatoms and NO(a), resulting in more NO(a) desorbing from the surface in the form of linear NO(a). Bridged NO(a) experiences stronger repulsive interactions with precovered oxygen than linear NO(a). The desorption activation energy of bridged NO(a) from oxygen-precovered Pt(1 1 0) is lower than that from clean Pt(1 1 0), but the desorption activation energy of linear NO(a) is not affected by the precovered oxygen. NO2 decomposes on Pt(1 1 0)-(1 × 2) surface at room temperature. The resulted NO(a) (both linear NO(a) and bridged NO(a)) and O(a) repulsively interact each other. Comparing with NO/Pt(1 1 0), more NO(a) desorbs from NO2/Pt(1 1 0) as linear NO(a), and both linear NO(a) and bridged NO(a) exhibit lower desorption activation energies. The reaction pathways of NO(a) on Pt(1 1 0), desorption or decomposition, are affected by their repulsive interactions with coexisting oxygen adatoms.  相似文献   

13.
The adsorption and reaction of H2O with adsorbed oxygen atoms on Ag(110) was examined by UPS. In agreement with previous EELS results, H2O formed multilayers of ice upon adsorption at 140 K. The ice layers could be easily distinguished from monolayer coverages of chemisorbed H2O (present above 160 K) by UPS. The ice layers produced (1) strong attenuation of the emission from the Ag d-bands, (2) a nearly 2 eV shift of H2O valence levels to higher binding energy and (3) strong attenuation of emission from the H2O 3a1 orbital. H2O was observed to react stoichiometrically with O(a) above 250 K to produce a pure layer of adsorbed hydroxyl species. The UPS spectra for these species exhibited features at ?5.8 and ?8.7 eV, as well as strong features above the d-bands. These spectra were compared with those for OH(a) on other surfaces, and the difficulties of identifying OH by UPS due to contamination by excess H2O are discussed.  相似文献   

14.
Comparative investigations of secondary ion emission, electron induced ion emission and flash filament signals from polycrystalline vanadium surfaces exposed to well-defined O2, H2, H2O and (O2 + H2) doses (<500 L) have been carried out. The vanadium target could be heated and bombarded by either electrons (300 eV) or ions (3 keV) under ultra high vacuum conditions (<10?10 Torr). The investigations were carried out with a computer controlled ultra high vacuum mass spectrometer. The experimental results establish exact reproducible spectra of well defined surface layers. They give detailed insight into the reactions between H2, O2 H2O and vanadium, and some interactions between these species. They further indicate the importance of bulk and surface diffusion as well as the influence of the probing ion and electron bombardment. A clear distinction between bulk oxygen, surface oxides, and adsorbed oxygen for the vanadium-oxygen interaction at room temperature could be established. For the interaction of hydrogen with clean and oxygen covered vanadium surfaces the formation of adsorbed hydrogen, bulk solution of hydrogen, and the formation of OH groups and H2O could be demonstrated. A detection limit below 10?5 of one single monolayer for metal bonded hydrogen could be established.  相似文献   

15.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

16.
The influence of H2O on the adsorption behavior of NO or NO2 on a silver powder surface was studied by SERS and XPS at room temperature. Water vapor was found to be responsible for the adsorption of NO on the silver powder surface. When surface species such as Ag2O are present on the surface, some of the NO2 molecules are adsorbed on the surface species to produce NO-3, whereas NO molecules are adsorbed on a different site to produce NO-2.  相似文献   

17.
In the present study, the adsorption behaviour of methanol (CH3OH) and ethanol (C2H5OH) molecules over heterofullerene C59B surface is studied by density functional theory calculations. This heterofullerene is obtained from C60 by substituting a carbon atom with a boron atom and relaxing self-consistently the structure to the local minimum. The adsorption of CH3OH and C2H5OH on the C59B is exothermic and the relaxed geometries are stable. The CH3OH and C2H5OH adsorption can also induce a change in the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gap of the nanocage. The dehydrogenation pathways of CH3OH and C2H5OH via O–H and C–H bonds scission are also examined. The results indicate that O–H bond scission is the most favourable pathway on the C59B surface.  相似文献   

18.
On the surface of NaF the adsorption isotherms of H2O, D2O, CH3OH, C3H3OH and 1-C3H7OH as well as the infrared spectra of H3O, D2O, dilute HDO, CH3OH and CH3OD were measured. The adsorption temperatures of H3O (253–308 K) were within the phase transition region where two phases of low and high density coexist, while those of CH3OH, C2H5OH and 1-C3H3OH were yet within a super-critical region. The entropy of the 2D condensed H2O on NaF was found to be 14.0 cal K?1 mol?1, which suggests that the condensed phase of water on NaF is liquid-like. The OD stretching band of dilute HDO in the 2D condensed water gives a maximum adsorption at ca. 2530 cm?1 with a half width of ca. 150 cm?1, being in good agreement with that in liquid water. Comparison of the integrated absorbance of the D2O bending mode with that of the OD stretching mode suggests that the cluster size of the 2D condensed water on NaF decreases with increasing temperature. The 2D critical temperature and the occupied areas of these adsorbates enable us to conclude that the compatibility of the molecular size with the surface lattice is not important in the occurrence of the 2D condensation of the hydrogen-bonding molecules on NaF and that adsorbed molecules are randomly oriented on the surface to the extent similar to that in 3D liquid state.  相似文献   

19.
In this work we study the interaction of water molecules with deuterated and bare polycrystalline diamond surfaces upon exposure to water vapor by X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HR-EELS). To distinguish the molecular origin of hydrogen bonds (i.e. C–H, O–H, C–O–H, etc.) formed on the diamond surface upon interaction with the water molecules, deuterated and hydrogenated gases were used in our experiments. Diamond films were deposited from a deuterated gas mixture to induce C(di)-D surface terminations. Water adsorption on bare diamond surface gives rise to the appearance of well defined and pronounced C–H and C–OH vibrational HR-EELS peaks and an intense O (1s) XPS peak. These chemically adsorbed water fragments survive 300 °C anneal temperature under ultra-high vacuum conditions. Annealing at 600 °C of the water exposed bare diamond surface results in disappearance of the C–OH vibrational modes alongside with a pronounced reduction of the C–H vibrational modes, whilst only upon annealing to ~ 800 °C the O (1s) XPS peak decreased substantially in intensity. We associate these effects with dissociative adsorption of the water molecules on the bare diamond surfaces.Water exposure onto a deuterated surface, on the other hand, does not result in the appearance of the C–OH vibrational peaks but only to an increase of the C–H vibrational HR-EELS mode along side with the appearance of a weaker XPS O (1) peak, as compared to the same experiment, performed on the bare surface. 300 °C anneal significantly diminishes surface oxygen concentration, as monitored by XPS. We associate these results with H2O decomposition reactions and also with molecular adsorption on deuterated diamond surfaces. Annealing of the water exposed deuterated diamond surface, results in a pronounced decrease and disappearance of the O (1s) XPS peak at a temperature of ~ 800 °C.  相似文献   

20.
X-ray photoelectron spectroscopy has been used to study the adsorption and catalytic decomposition of formaldehyde on a W(100) single crystal. Comparison with the O(1s) spectra of CO(ads), CO2(ads) and O(ads) has been carried out in an attempt to understand the surface complexes formed from H2CO. It has been shown that H2CO dissociates at 100 K upon adsorption up to ca. 1/2 monolayer. Above this coverage, condensation of undissociated H2CO occurs. A surface complex leading to the liberation of CO2 from the formaldehyde layer has been detected by XPS. However, no complex uniquely related to an intermediate which yields a small quantity of CH4 has been detected by XPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号