首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanotubes of lepidocrocite titanates   总被引:8,自引:0,他引:8  
Titanate nanotubes were synthesized in hydrothermal treatment of anatase titania powders and concentrated NaOH solution and their structure was investigated. It was suggested that the nanotubes might be constructed from lepidocrocite HxTi2− x/4x/4O4 (x0.7, □: vacancy) sheets. The newly proposed lepidocrocite titanate nanotube model was supported by X-ray diffraction, electron diffraction, and thermogravimetry studies.  相似文献   

2.
A new value, -100±10 kJ mol- 1, was obtained for the enthalpy of formation of gaseous ketene, H f 0(g)(CH2 = C = O), from the data obtained by the authors in combination with certain published experimental and calculation data. The suggested value is considerably lower than the value accepted in the literature, -48 kJ mol- 1.  相似文献   

3.
4.
Thermochemical reactions occurring in various stages of structural transformations of native lignin in its thermal treatment in a wide temperature range are considered and classified. Attention is given to the initial state of lignin in its primary isolation without heating. The terminology of lignin products, used in the literature, is put in order to a certain extent. The thermochemical reactions in which lignins are transformed in processing of raw wood materials and the structure of isolated lignins undergoes changes in the course of the target thermal treatment are differentiated. The applied aspect of the directed thermochemical synthesis of new lignin-based low- and high-molecular-mass compounds is discussed.  相似文献   

5.
The kinetics constants for the decomposition reaction of an explosive can be used to calculate the lowest temperature (critical temperature, Tm) at which any specific size and shape of explosive can self heat to explosion; however, the accuracy of the calculation is in doubt without an independent experimental determination of a critical temperature for a known size and shape of the explosive. A method is presented for the experimental determination of critical temperatures on a routine basis, and it is shown that agreement between calculated and experimental values is excellent for most common explosives.  相似文献   

6.
7.
Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) = - ( 4 10.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) = - ( 2 80.5 ±1. 9)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} . From the obtained \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crII ) = - ( 40 8.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crIII ) = - ( 40 7.4 ±1. 3)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} . The proposed \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide, \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textON,\text g ) = - ( 10 9. 2 ± 2. 2)\text kJ  \textmol - 1 , \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} , were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the \Updelta\textf H\textm\texto \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} (C8H9O2N, g) value obtained in this study and the remaining experimental data used in the \Updelta\textr H\textm\texto \Updelta_{\text{r}} H_{\text{m}}^{\text{o}} calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.  相似文献   

8.
The enthalpies of solvation of four geometric isomers of 2,5-dimethyl-1-phenyl-1-thioxophosphorinan-4-one in chloroform, nitrobenzene, and methanol were calculated using the enthalpies of vaporization of the isomers determined by the modified Solomonov—Konovalov method from the enthalpies of solution of the compounds in CCl4 andp-xylene and molar refractions. The enthalpies of formation (ΔH f o) of the isomers in the condensed and gas phase were assessed in the framework of Benson's group additivity scheme by summing the ΔH f o values for phosphacycloketone fragments obtained from molecular mechanics calculations with the contributions of the phenyl group and S atom attached to the P atom. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1533–1536, September, 2000.  相似文献   

9.
The enthalpies of vaporization of different classes three-coordinated arsenic compounds have been determined according to their enthalpies of solution in hexane and molar refraction. The enthalpies of solvation of cyclic and acyclic As(III)-derivatives in hexane, carbon tetrachloride,p-xylene and pyridine are obtained and discussed. Part 6, see Ref. [1].  相似文献   

10.
First principles calculations of Li insertion in a variety of titanate structures have revealed a common mechanism underlying the intercalation behavior of these materials. The mechanism is based on the accommodation of the electron density donated upon intercalation in particular orbitals of Ti ions and is governed by a strong coupling between the structural and electronic degrees of freedom. A new predictive model is developed which relates the local structure of TiO2 polymorphs to their phase behavior upon Li intercalation.  相似文献   

11.
The main features of the experimental investigation of the thermochemistry of complexation reactions in solution and the mathematical treatment of the results of a calorimetric experiment have been considered. Some laws governing the thermodynamic and thermochemical characteristics of reactions resulting in the formation of complex compounds have been noted.Ivanovo Chemical-Engineering Institute. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 3, pp. 278–283, May–June, 1991. Original article submitted February 26, 1991.  相似文献   

12.
13.
The vaporization enthalpies (ΔH vap) of 97 primary, secondary, and tertiary alkylphosphines and alkyl(aryl)phosphines with different spatial structures were calculated using the Trouton and Wadso equations and the first-order topological solvation index1χs. The contributions of the H2P and HP groups and the phosphorus atom to the vaporization enthalpies of primary, secondary, and tertiary phosphines, respectively, were calculated. The results obtained can be used in calculations of ΔH vap for related phosphorus compounds. For Part 16, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 32–37, January, 2000.  相似文献   

14.
The results of calorimetric investigations of electrolyte solutions in the mixtures of water, methanol, N,N-dimethylformamide, and acetonitrile with numerous organic cosolvents are discussed with regard to the intermolecular interactions that occur in the solution. Particular attention is given to answer the questions how and to what extent the properties of the systems examined are modified by the cosolvent added and how much the properties of the cosolvent are revealed in the mixtures with the solvents mentioned above. To this goal, the analysis of the electrolyte dissolution enthalpies, single ionic transfer enthalpies, and enthalpic pair interaction coefficients as well as the preferential solvation (PS) model are applied. The analysis performed shows that in the case of the dissolution enthalpies of simple inorganic electrolytes in water–organic solvent mixtures, the shape of the dependence of the standard dissolution enthalpy on the mixed solvent composition reflects to a large extent the hydrophobic properties of the organic cosolvent. In the mixtures of methanol with organic cosolvents, the ions are preferentially solvated either by methanol molecules or by molecules of the cosolvent, depending on the properties of the mixed solvent components. The behavior of inorganic salts in the mixtures containing N,N-dimethylformamide is mostly influenced by the DMF which is a relatively strongly ion solvating solvent, whereas in acetonitrile mixtures, the thermochemical behavior of electrolyte solutions is influenced to a large extent by the properties of the cosolvent particularly due to the PS of cation by the cosolvent molecules.  相似文献   

15.
The enthalpies of myricetin dissolution are measured by means of calorimetry with mol dilutions of flavonoid: 96 mol % ethanol equal to 1: 9000, 1: 18000, and 1: 36000. The standard enthalpies of dissolution for the biologically active substance in an infinitely diluted (standard) solution of 96% ethanol are calculated from the experimental data. Physicochemical means of approximation are used to estimate the values of the standard enthalpy of combustion, and the enthalpy of melting is calculated for the investigated flavonoid. Finally, the compound’s standard enthalpy of formation is calculated using the Hess cycle.  相似文献   

16.
The heats of solution of a series of substituted pyrroles in benzene, carbon tetrachloride, chloroform, DMF, and pyridine were measured by a calorimetric method at 298.15 K. The influence of substituents in the pyrrole molecule on the energy parameters of solvation by organic solvents is discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 495–499, March, 1993.  相似文献   

17.
The standard (po = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for the liquids 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine were determined by static bomb combustion calorimetry. The standard molar enthalpies of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. The standard (po = 0.1 MPa) molar enthalpies of formation of the three compounds studied, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization, yielding ((−42.7 ± 1.9), (−18.2 ± 1.8) and (−233.5 ± 1.8)) kJ · mol−1, for 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine, respectively.  相似文献   

18.
19.
Five types of Polish bituminous coal of different grades were analysed using, simultaneously, thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential thermal analysis (DTA) and evolving gas analysis (EGA) to investigate the non-isothermal coal oxidation. The TGA, DTG and DTA curves, together with EGA, provided parameters which characterize the tendency of a given coal towards oxidation. The TGA and EGA parameters can also be used to approximate the specific active surface area of coal in reaction with oxygen. Due to the negative effects of coal oxidation, such as self-oxidation, an inhibitor was proposed and tested by analysis of the above specified thermoanalytical curves and EGA.  相似文献   

20.
The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline state of the 2-, 3- and 4-hydroxymethylphenols, $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = \, - ( 3 7 7. 7 \pm 1. 4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr) }} = - (383.0 \pm 1.4) \, \,{\text{kJ}}\,{\text{mol}}^{ - 1} $ and $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = - (382.7 \pm 1.4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , respectively, were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2O(l), at T = 298.15 K, measured by static bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to measure the dependence of the vapour pressure of the solid isomers of hydroxymethylphenol with the temperature, from which the standard molar enthalpies of sublimation were derived using the Clausius–Clapeyron equation. The results were as follows: $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (99.5 \pm 1.5)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (116.0 \pm 3.7) \,{\text{kJ}}\,{\text{mol}}^{ - 1} $ and $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (129.3 \pm 4.7)\,{\text{ kJ mol}}^{ - 1} $ , for 2-, 3- and 4-hydroxymethylphenol, respectively. From these values, the standard molar enthalpies of formation of the title compounds in their gaseous phases, at T = 298.15 K, were derived and interpreted in terms of molecular structure. Moreover, using estimated values for the heat capacity differences between the gas and the crystal phases, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation, at T = 298.15 K, were derived for the three hydroxymethylphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号