首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cure kinetics of the epoxy resin (EP)/organic montmorillonite, with 4-diamino diphenyl methane (DDM) as curing agent, was studied by non-isothermal differential scanning calorimetry (DSC) at four linearly programmed heating rates of 5, 10, 15, and 20 deg/min, and the effects of original montmorillonite (OMMT) on cure kinetics of epoxy resin were investigated. A two parameter (m, n) autocatalytic model was used to describe the cure kinetics of the epoxy resins. The kinetic parameters were calculated with the Malek method and the curves obtained by the Málek method showed a good agreement with experimental data for EP/DDM and EP/DDM/OMMT systems. The results, based on the isoconversional method showed that the activation energy was obvious difference with the addition of OMMT in the early stages of the cure, which indicated that the OMMT have catalytic effect on the epoxy ring-opening.  相似文献   

2.
The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure at long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
《Thermochimica Acta》1987,122(1):29-35
The polymerization kinetics of three epoxy adhesives HX-205, HX-206 and F-185 was defined by means of thermal analysis techniques (DSC and TMA).It was found that the liquid carboxy-terminated butadiene acrylonitriles (CTBN) and the solid rubber elastomer present in HX-206 and F-185 do not affect the phenomenological kinetics of the isothermal cure process by comparison with HX-205, which contains the same epoxy but no elastomer.It was also found that the isothermal (373 K) cure of these adhesives follows a two-range behaviour, i.e., the phenomelogical order of the cure kinetics is close to zero before and close to one after a “critical” time of cure.The trend of the glass transition temperature Tg vs the cure degree α for HX-206 and F-185 was always below that for HX-205.Tg did not approach the temperature of cure tc for α = 1 for elastomer-added adhesives, whereas HX-205 displayed an almost liear trend, with e.g. Tg = 87° C for α. = 85%.  相似文献   

4.
Vulcanization kinetics of natural rubber (NR) compounds with efficient vulcanization system was studied through phenomenological approach using the experimentally cure data obtained from a moving die rheometer. The cure kinetic parameters were defined using the proposed models by Claxton?CLiska and Deng?CIsayev with the support of curve fitting software. The effects of the amount of accelerators, sulfur and silica in the formulations on the cure characteristics and cure kinetic parameters at high cure temperatures were investigated. Kinetic data results showed that the above two models were able to describe the curing behaviour of the studied compounds satisfactorily. It showed that the fitting of the experimental data with Claxton?CLiska and Deng?CIsayev could provide a good platform to investigate the cure kinetics of the prepared NR compounds.  相似文献   

5.
Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica‐filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100°C and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60‐90°C). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.  相似文献   

6.
IntroductionEpoxy resins are widely used in the fields of coa-tings,adhesives,insulating materials,etc..Diglycidylether of bisphenol A(DGEBA)is the most importantepoxy resin in industry because of its fluidity,physicaland mechanical properties after cure,…  相似文献   

7.
The cure kinetics of a biphenyl-based liquid crystalline (LC) epoxy resin (LCER) was studied using differential scanning calorimetry (DSC) and polarized optical microscopy. The effects of LC phase formation on the cure kinetics were investigated. Both a model-free isoconversional method and a model-fitting method were used to analyze the DSC data. Results from the isoconversional analysis were applied to develop tentative multi-step kinetic models describing the curing reaction. Kinetic analysis showed that compared to the resins cured in amorphous phase, LCERs exhibited higher values of reaction enthalpy and a complex dependence of activation energy on the degree of cure. The formation of the LC phase resulted in a decrease in activation energy, leading to higher degree of reaction.  相似文献   

8.
9.
Summary A kinetic study of cure kinetics of epoxy resin based on a diglycidyl ether of bisphenol A (DGEBA), with poly(oxypropylene) diamine (Jeffamine D230) as a curing agent, was performed by means of differential scanning calorimetry (DSC). Isothermal and dynamic DSC characterizations of stoichiometric and sub-stoichiometric mixtures were performed. The kinetics of cure was described successfully by empirical models in wide temperature range. System with sub-stoichiometric content of amine showed evidence of two separate reactions, second of which was presumed to be etherification reaction. Catalytic influence of hydroxyl groups formed by epoxy-amine addition was determined.  相似文献   

10.
Nanostructuring of thermosetting systems using the concept of templating and taking advantage of the self-assembling capability of block copolymers is an exciting way for designing new materials for nanotechnological applications. In this first part of the work, reactive blends based on stoichiometric amounts of a diglycidylether of bisphenol-A epoxy resin and 4,4′-diaminodiphenylmethane cure agent modified with three poly(ethylene oxide)-co-poly(propylene oxide)-co-poly(ethylene oxide) block copolymers were studied. Cure advancement of these systems was analyzed by differential scanning calorimetry. The experimental results show a delay of cure rate, which increases as copolymer content and PEO molar ratio in the block copolymer rise. Infrared spectroscopy shows that PEO block is mainly responsible of physical interactions between the hydroxyl groups of growing epoxy thermoset and ether bonds of block copolymer. These interactions are mainly responsible for the delaying of cure kinetics. The molar ratio between blocks also has a critical influence on the delaying of the cure rate. A mechanistic approach of cure kinetics allows us to relate the delay of cure as a consequence of block copolymer adding to physical interactions between components.  相似文献   

11.
酸酐固化环氧树脂/蒙脱土复合材料的等温固化动力学   总被引:5,自引:0,他引:5  
用等温差示扫描量热法(DSC)研究了酸酐固化环氧树脂/蒙脱土复合材料的等温固化过程,考察了未处理的蒙脱土(MMT)和有机蒙脱土(OMMT)对环氧树脂固化动力学的影响. 实验表明, 环氧树脂的固化过程包含自催化机理,加入蒙脱土没有改变固化反应机理. 用Kamal方程对该体系的固化过程进行拟合,得到反应级数m、n,反应速率常数k1、k2,总反应级数(m + n)在2.4~3.0之间. MMT的加入使环氧树脂体系的k1、k2有所降低,而OMMT的加入对体系的k1、k2影响较为复杂,加入蒙脱土对环氧树脂固化体系的活化能影响较小.  相似文献   

12.
近年来,半互穿聚合物网络(SIPN)概念被用来研制能结合热塑性聚合物的加工性和热固性聚合物的高温性能的大分子体系,用于复合材料耐高温树脂基体。例如:乙炔端基酰亚胺低聚物与热塑性聚酰亚胺基SIPN,线性聚酰亚胺与热固性双马来酰亚胺基SIPN以及热塑性树脂与双腈基SIPN已有报道。研究结果表明共混物起到协同作用,易于加工并具有优异的性能。乙炔端基砜(ATS)树脂具有与聚砜树脂相类似的结构,被认为在将来代替环氧用于高性能粘合剂和复合材料树脂基体的候选者之一。其另  相似文献   

13.
The dynamic cure kinetics of thermosetting acetylene-terminated sulfone (ATS) and two blends prepared by the ATS and thermoplastic bisphenol A polysulfone (PSF), polyary-lethersulfone with cardo group (PES-C) were determinated by differential scanning calori-metry (DSC). The addition of polysulfone's resin increases the temperature of initial reaction and decreases the activation energy of cure reaction(E), pre-exponnential factor (LnA), and heat of cure reaction (AH). The temperature of reaction peak and final reaction and the reaction order(n) have been no effect.  相似文献   

14.
15.
The effects of hyperbranched polyesters on the cure kinetics of diglycidyl ether of bisphenol A (DGEBA) in the presence of m‐phenylene diamine were investigated with nonisothermal differential scanning calorimetry. The results showed that the addition of hyperbranched polyesters enhanced the cure reaction of DGEBA with m‐phenylene diamine, and this resulted in a reduction of the peak temperature of the curing curve and the activation energy because of the low viscosity and large number of terminal hydroxyl groups. However, when linear poly(ethylene glycol) was added, the activation energy of the blends also slightly decreased, whereas the peak temperature of the curing curve increased. The curing kinetics of the blends were calculated by the isoconversional method of Málek. The two‐parameter autocatalytic model (i.e., the ?esták–Berggren equation) was found to be the most adequate for describing the cure kinetics of the studied systems. The obtained nonisothermal differential scanning calorimetry curves showed results in agreement with those theoretically calculated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2649–2656, 2004  相似文献   

16.
17.
Summary : An investigation was carried out into the cure kinetics of carbon nanofiber (CNF) mat-epoxy nanocomposites, composed of bisphenol-A based epoxy resin and diethylene triamine as a curing agent. It was observed that the rate of cure reaction for CNF mat-epoxy nanocomposites was higher than that for neat epoxy resin at low curing temperatures and the presence of the CNF mat produced the maximum influence at a certain curing temperature and time. At high curing temperature and long curing times, the effect of CNF mat on the cure rate was insignificant. The CNF mat-epoxy composite exhibited somewhat lower value of activation energy than that of the neat epoxy system at the beginning of the curing stage. The weight fraction of CNF mat also affected the cure reaction of epoxy nanocomposites at the same curing temperature. As the amount of CNF mat increased, the cure rate was higher at the same cure time. However, at high CNF mat loading, the cure reaction was retarded since the amount of epoxy and hardener decreased dramatically at high CNF contents together with the hindering effect of the CNF mat on the diffusion of epoxy resin and the curing agent, leading to lower crosslinking efficiency. Although the curing efficiency of epoxy nanocomposites dropped at high CNF mat content, the glass transition temperature (Tg) was still high due to the ultra-high strength of the CNF mat. The cure kinetics of CNF mat-epoxy nanocomposites was in good agreement with Kamal's model.  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - The cure kinetics of a composite solid propellant premix based on ammonium perchlorate, hydroxyl-terminated polybutadiene (HTPB) and diisocyanate...  相似文献   

19.
The paper presents an experimentally supported modeling approach, which describes the rheology, detailed cure kinetics, and chemorheology of a gum elastomer in course of sulfur accelerated vulcanization. Changes in the rheology during cure reaction are correlated with degree of cross-linking, described by vulcanization kinetics. Oil extended SBR exemplifies the approach.  相似文献   

20.
The latent properties and cure behaviors of an epoxy blend system based on cycloaliphatic epoxy (CAE) and diglycidyl ether of bisphenol A (DGEBA) epoxy containing N‐benzylpyrazinium hexafluoroantimonate (BPH) as a thermal latent initiator were investigated with near‐infrared (N‐IR) spectroscopy. The assignments of the latent properties and cure kinetics were performed by the measurements of the N‐IR reflectance for epoxide and hydroxyl functional groups at different temperatures and compositions. As a result, this system showed more than one type of reaction, and BPH was an excellent thermal latent catalyst without any coinitiator. The cure behaviors were identified by the changes in the absorption intensity of the hydroxyl groups at 7100 cm−1 with different composition ratios. Moreover, characteristic N‐IR band assignments were used to evaluate the reactive kinetics and were shown to be an appropriate method for studying the cure behaviors of the CAE/DGEBA blend system containing a thermal latent catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 326–331, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号