首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
The high-temperature phase behaviour of RbH2PO4 and CsH2PO4 have been studied. RbH2PO4 undergoes a single quasi-irreversible phase transition with an enthalpy of 4.665 kJ mol?1. The transition is found to occur over the temperature range 86–111°C. CsH2PO4 undergoes two transitions at 149 and 230°C. The lower one is quasi-irreversible and has an enthalpy of 4.284 kJ mol?1. The one at 230°C is reversible and has an enthalpy of 1.071 kJ mol?1.  相似文献   

2.
Molar enthalpies of solid-solid and solid-liquid phase transitions of the LaBr3, K2LaBr5, Rb2LaBr5, Rb3LaBr6 and Cs3LaBr6 compounds were determined by differential scanning calorimetry. K2LaBr5 and Rb2LaBr5 exist at ambient temperature and melt congruently at 875 and 864 K, respectively, with corresponding enthalpies of 81.5 and 77.2 kJ mol-1. Rb3LaBr6 and Cs3LaBr6 are the only 3:1 compounds existing in the investigated systems. The first one forms from RbBr and Rb2LaBr5 at 700 K with an enthalpy of 44.0 kJ mol-1 and melts congruently at 940 K with an enthalpy of 46.7 kJ mol-1. The second one exists at room temperature, undergoes a solid-solid phase transition at 725 K with an enthalpy of 9.0 kJ mol-1 and melts congruently at 1013 K with an enthalpy of 57.6 kJ mol-1. Two other compounds existing in the CsBr-based systems (Cs2LaBr5 and CsLa2Br7) decompose peritectically at 765 and 828 K, respectively. The heat capacities of the above compounds in the solid as well as in the liquid phase were determined by differential scanning calorimetry. A special method - 'step method' developed by SETARAM was applied in these measurements. The heat capacity experimental data were fitted by a polynomial temperature dependence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Using XRY-1C calorimeter, the standard molar enthalpy of taurine was determined to be ?2546.2?kJ?mol?1 . The reliability of the instrument used was tested by using naphthalene as reference material; and through comparing the molar combustion enthalpy of naphthalene measured with its standard value found in literature, the absolute error and relative error were found to be 4.53?kJ?mol?1 and 0.09%, respectively. The melting point and melting enthalpy of taurine were determined by Differential Scanning Calorimetry (DSC), which was found to be 588.45?K and ?22.197?kJ?mol?1, respectively. Moreover, using the DSC method, the specific heat capacities C p of taurine was measured and the relationship between C p and temperature was established. The thermodynamic basic data obtained are available for the exploiting new synthesis method, engineering design and industry production of taurine.  相似文献   

4.
The enthalpy of hydrolysis of solid tungsten azide pentafluoride in alkaline aqueous solution (1.O mol dm?3 KOH; 298.2K) is ?578 kJ mol?1. Hence its enthalpy of formation is ?1170 kJ mol?1.  相似文献   

5.
Equilibrium constants for 2-methylpropan-1-ol + 2-methylpropanal + hydrogen have been calculated from measurements of the composition of mixtures formed by passing the vapour over a catalyst at several temperatures in the range 473 to 563 K. Equations relating the changes in enthalpy and entropy of the dehydrogenation reaction to temperature were derived from the equilibrium constants with the aid of heat capacities. By coupling these changes with other thermodynamic data, the standard enthalpy of formation and the standard entropy of 2-methylpropanal at 298.15 K were calculated to be ?(215.7 ± 1.3) kJ mol?1 and (331.2 ± 1.7) J K?1 mol?1 respectively, in the gas state, and ?(247.3 ± 1.8) kJ mol?1 and (238.3 ± 4.4) J K?1 mol?1 respectively, in the liquid state.  相似文献   

6.
Heat capacities of lanthanum perchlorate octahydrate La(ClO4)38H2O have been measured from 11 to 320 K by an adiabatic calorimeter. Two phase transitions were observed at 115.5 K and 285.2 K, respectively. The enthalpy and entropy of the upper phase transition amounted to 17.97 kJ mol?1 and 62.98 JK?1mol?1. Anomalously large entropy change can be interpreted by a statistical model including a combined positional and orientational disorder of the hydrate water molecules, in accord with an unusually high crystal symmetry of the room temperature phase.  相似文献   

7.
This paper reports the computed O2 binding to heme, which for the first time explains experimental enthalpies for this process of central importance to bioinorganic chemistry. All four spin states along the relaxed Fe? O2‐binding curves were optimized using the full heme system with dispersion, thermodynamic, and scalar‐relativistic corrections, applying several density functionals. When including all these physical terms, the experimental enthalpy of O2 binding (?59 kJ mol?1) is closely reproduced by TPSSh‐D3 (?66 kJ mol?1). Dispersion changes the potential energy surfaces and leads to the correct electronic singlet and heptet states for bound and dissociated O2. The experimental activation enthalpy of dissociation (~82 kJ mol?1) was also accurately computed (~75 kJ mol?1) with an actual barrier height of ~60 kJ mol?1 plus a vibrational component of ~10 and ~5 kJ mol?1 due to the spin‐forbidden nature of the process, explaining the experimentally observed difference of ~20 kJ mol?1 in enthalpies of binding and activation. Most importantly, the work shows how the nearly degenerate singlet and triplet states increase crossover probability up to ~0.5 and accelerate binding by ~100 times, explaining why the spin‐forbidden binding of O2 to heme, so fundamental to higher life forms, is fast and reversible.  相似文献   

8.
Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg2+ and Co2+ cationic centres in Mg‐MOF‐74 and Co‐MOF‐74, respectively, was studied by means of variable‐temperature infrared (VTIR) spectroscopy. Perturbation of the H2 molecule by the cationic adsorbing centre renders the H? H stretching mode IR‐active at 4088 and 4043 cm?1 for Mg‐MOF‐74 and Co‐MOF‐74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79–95 K allowed standard adsorption enthalpy and entropy to be determined. Mg‐MOF‐74 showed ΔH0=?9.4 kJ mol?1 and ΔS0=?120 J mol?1 K?1, whereas for Co‐MOF‐74 the corresponding values of ΔH0=?11.2 kJ mol?1 and ΔS0=?130 J mol?1 K?1 were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation‐exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.  相似文献   

9.
《Thermochimica Acta》1987,112(2):141-149
Equilibria involving the molecules Ga2S(g), In2S(g), and InGaS(g), by the reaction Ga2S(g) + In2S(g) = 12InGaS(g) were investigated between 1060–1350 K by the Knudsen-effusion, mass-spectrometric method. The reaction enthalpy at 298 K was calculated to be 0±1 kJ mol−1. The enthalpy of formation of InGaS at 298 K and the enthalpy of atomization of InGaS at 298 K were calculated to be 80±18 kJ mol−1 and 710±18 kJ mol−1, respectively. The equilibrium constant and the enthalpy of reaction indicated that the three gaseous molecules have a bent triatomic structure in which S is a center atom and no bond between metals.  相似文献   

10.
An accurate gas-phase acidity for germane (enthalpy scale, equivalent to the proton affinity of GeH3 ?), ΔH acid o(GeH4) = 1502.0 ± 5.1 kJ mol?1, is obtained by constructing a consistent acidity ladder between GeH4, and H2S by using Fourier transform-ion cyclotron resonance spectrometry, and 0 and 298.15 K values for the first bond dissociation energy of GeH4 are proposed: D0 o(H3Ge-H) = 352 ± 9 kJ mol?1; D o(H3Ge-H) = 358 ± 9 kJ mol?1, respectively. These results are compared with experimental and theoretical data reported in the literature. Methylgermane was found to be a weaker acid than germane by approximately 35 kJ mol?1: ΔH acid o = 1536.6 kJ mol?1.  相似文献   

11.
Rare-earth perchlorate complex coordinated with glycine [Nd2(Gly)6(H2O)4](ClO4)6·5H2O was synthesized and its structure was characterized by using thermogravimetric analysis (TG), differential thermal analysis (DTA), chemical analysis and elementary analysis. Its purity was 99.90%. Heat capacity measurement was carried out with a high-precision fully-automatic adiabatic calorimeter over the temperature range from 78 to 369 K. A solid-solid phase transformation peak was observed at 256.97 K, with the enthalpy and entropy of the phase transformation process are 4.438 kJ mol−1 and 17.270 J K−1 mol−1, respectively. There is a big dehydrated peak appears at 330 K, its decomposition temperature, decomposition enthalpy and entropy are 320.606 K, 41.364 kJ mol−1 and 129.018 J K−1 mol−1, respectively. The polynomial equations of heat capacity of this compound in different temperature ranges have been fitted. The standard enthalpy of formation was determined to be −8023.002 kJ mol−1 with isoperibol reaction calorimeter at 298.15 K.  相似文献   

12.
The standard enthalpy of combustion of cyclohexylamine has been measured in an aneroid rotating-bomb calorimeter. The value ΔHoo(c-C6H11NH2, 1) = ?(4071.3 ± 1.3) kJ mol?1 yields the standard enthalpy of formation ΔHfo(c-C6H11NH2, 1) = ?(147.7 ± 1.3) kJ mol?1. The corresponding gas-phase standard enthalpy of formation for cyclohexylamine is ΔHfo(c-C6H11NH2, g) = ?(104.9 ± 1.3) kJ mol?1. The standard enthalpy of formation of cyclohexylamine hydrochloride, ΔHfo(c-C6H11NH2·HCl, c) = ?(408.2 ± 1.5) kJ mol?1, was derived by combining the measured enthalpy of solution of the salt in water, literature data, and the ΔHco measured in this study. Comment is made on the thermochemical bond enthalpy H(CN).  相似文献   

13.
We have made calorimetric measurements of the enthalpy of solution of NH4NO3(c, IV) in water at 298 K, where (c, IV) indicates the crystal form of amomonium nitrate that is stable from 256 to 305 K. Results of our measurements have been combined with enthalpy of dilution values from Parker to obtain the standard enthalpy of solution of NH4NO3 (c, IV) in water at 298.15 K to be ΔHo = 25.41 kJ mol?1.  相似文献   

14.
The direct in situ NMR observation and quantification, based on the aldehyde –CH chemical shift region, of the inter‐conversion of secoiridoid derivatives due to temperature and solvent effects is demonstrated in complex extracts of natural products without prior isolation of the individual components. The equilibrium between the aldehyde hydrate form and the dialdehyde form of the oleuropein aglycon of an olive leaf aqueous extract in D2O was shown to be temperature dependent. The resulting thermodynamic values of the Van't Hoff plot with ΔHo = ?26.34 ± 1.00 kJ mol?1 and TΔS° (298 K) = ?24.70 ± 1.00 kJ mol?1 demonstrate a significant entropy term which nearly compensates the effect of enthalpy at room temperature. The equilibrium between the two diastereomeric hemiacetal forms and the dialdehyde form of the oleuropein 6‐O‐β‐d ‐glucopyranoside aglycon of an olive leaf aqueous extract in CD3OD was also shown to be strongly temperature dependent again because of the significant entropy term (TΔS° (298 K) = ?26.50 ± 1.39 kJ mol?1) compared with that of the enthalpy term (ΔHo = ?36.64 ± 1.46 kJ mol?1). This is the first demonstration of the significant role of the entropy parameter in determining the equilibrium of chemical transformations in complex mixtures of natural products due to solvent and temperature effects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A low-temperature quartz resonator method for determining the enthalpy of sublimation has been described. A quartz crystal cooled to the temperature of liquid nitrogen becomes a sensitive microbalance. The method permits the value of ΔHsub to be obtained within 4–5 h and is especially useful in measuring ΔHsub values of substances with low saturated vapour pressures. The following values of ΔHsub were received for standard substances: benzoic acid, ΔHsub = (90.8±0.6) kJ mol?1 at 293–319 K: naphthalene, ΔHsub = (72.3±0.8) kJ mol?1at 293–331 K.  相似文献   

16.
The sample of LiCoO2 was synthesized, and the heat capacity was measured by adiabatic calorimetry between 13 and 300 K. The smoothed values of the heat capacity were calculated from the data. The thermodynamic functions, standard enthalpy, entropy and Gibbs energy, of LiCoO2 were calculated from the heat capacity and the numerical values are tabulated at selected temperatures from 15 to 300 K. The heat capacity, enthalpy, entropy, and Gibbs energy at T=298.15 K are 71.57 J K–1mol–1, 9.853 kJ mol–1, 52.45 J K–1 mol–1, –5.786 kJ mol–1, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-??-lactamase (M??L), the thermodynamic parameters of penicillin G hydrolysis catalyzed by M??L L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ??G ?? ?? are 88.26, 89.44, 90.49, and 91.57?kJ?mol?1 at 293.15, 298.15, 303.15, and 308.15?K, respectively, activation enthalpy ??H ?? ?? is 24.02?kJ?mol?1, activation entropy ??S ?? ?? is ?219.2511?J?mol?1?K?1, apparent activation energy E is 26.5183?kJ?mol?1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by M??L L1 is an exothermic and spontaneous reaction.  相似文献   

18.
The rate of the fastest ene reaction between 4-phenyl-1,2,4-triazoline-3,5-dione (1) and 2,3-dimethyl-2-butene (2) is studied by means of stopped flow in solutions of benzene (k 2 = 55.6 ± 0.5 and 90.5 ± 1.3 L mol?1 s?1 at 23.3 and 40°C) and 1,2-dichloroethane (335 ± 9 L mol?1 s?1 at 23.5°C). The enthalpy of reaction (?139.2 ± 0.6 kJ/mol in toluene and ?150.2 ± 1.4 kJ/mol in 1,2-dichloroethane) and the enthalpy (20.0 ± 0.5 kJ/mol) and entropy (144 ± 2 J mol?1 K?1) of activation are determined. A clear correlation is observed between the reaction rate and ionization potential in a series of ene reactions of 4-phenyl-1,2,4-tri-azoline-3,5-dione with acyclic alkenes.  相似文献   

19.
Heat capacity of crystalline L- and DL-phenylglycines was measured in the temperature range from 6 to 305?K. For L-phenylglycine, no anomalies in the C p (T) dependence were observed. For DL-phenylglycine, however, an anomaly in the temperature range 50?C75?K with a maximum at about 60?K was registered. The enthalpy and the entropy changes corresponding to this anomaly were estimated as 20?J?mol?1 and 0.33?J?K?1 mol?1, respectively. In the temperature range 205?C225?K, an unusually large dispersion of the experimental points and a small change in the slope of the C p (T) curve were noticed. Thermodynamic functions for L- and DL-phenylglycines in the temperature range 0?C305?K were calculated. At 298.15?K, the values of heat capacity, entropy, and enthalpy are equal to 179.1, 195.3?J?K?1 mol?1, and 28590?J?mol?1 for L-phenylglycine and 177.7, 196.3?J?K?1 mol?1 and 28570?J?mol?1 for DL-phenylglycine. For both L- and DL-phenylglycine, the C p (T) at very low temperatures does not follow the Debye law C ?C T 3 . The heat capacity C p (T) is slightly higher for L-phenylglycine, than for the racemic DL-crystal, with the exception of the phase transition region. The difference is smaller than was observed previously for the L-/DL-cysteines, and considerably smaller, than that for L-/DL- serines.  相似文献   

20.
The relative enthalpy of titanite and enthalpy of CaTiSiO5 melt have been measured using drop calorimetry between 823 K and 1843 K. Enthalpies of solution of titanite and CaTiSiO5 glass have been measured by the use of hydrofluoric acid solution calorimetry at 298 K. Enthalpy of vitrification at 298 K, δvitr H(298 K) = (80.7 ± 3.4) kJ mol−1, and enthalpy of fusion at the temperature of fusion 1656 K, δfus H(1656 K) = (139 ± 3) kJ mol−1, of titanite have been determined from experimental data. The obtained enthalpy of fusion is considerably higher than up to the present published values of this quantity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号