首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

2.
Using Thermal Programmed Desorption (TPD), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES) we have studied the adsorption of hydrogen-containing molecules (H2, C2H2, C2H4, C2H6) and oxygen-containing molecules (CO and NO) on two vicinal planes of the Re(0001) surface. The two surfaces are designated thus: ReS ¦14(0001)(101̄1)¦, ReS |6(0001)(167̄1) | . The structural defects have little effect on the adsorption of hydrogen and the hydrocarbons. They are more influential in the case of the oxygen-containing molecules. This is particularly true for CO; on the kink sites the CO molecules can completely dissociate whereas only a partial dissociation is possible on the steps. These results should be viewed in relation to the strong bond energy between carbon and oxygen in a CO molecule of 256 kcal/mole and the great affinity of oxygen for rhenium; ERe?O = 127 kcal/mole.  相似文献   

3.
4.
The chemisorption of small molecules (CO, CO2, C2H2, C2H4, H2 and NH3) has been studied on the clean Fe(110) and (111) crystal faces by low-energy electron diffraction (LEED) and thermal desorption. C2H4 and C2H2 yield the same sequence of surface structures that change with temperature and crystal orientation. CO and CO2 chemisorption similarly results in the formation of the same types of surface structures that change with surface temperature and crystal orientation. Ammonia forms several ordered surface structures on both iron crystal faces. All of the molecules decompose as a function of temperature on the iron surfaces as indicated by the Auger and thermal desorption spectra.  相似文献   

5.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

6.
Energy loss spectra of 2.5 keV electrons in the region of the carbon K-edge in C2H2, C2H4, C2H6 and C6H6 are report  相似文献   

7.
Electron excited carbon KVV Auger spectra of CO, C2H4, C2N2 and C6H6 adsorbed on Pt(111) are compared. By estimating the effective Coulomb interaction between the final-state holes it is possible to associate some features with transitions observed in free molecule spectra, but others must involve at least one electron with energy within the conduction band of the metal. Such “cross-transitions” are associated with strong 2π* character of filled states in the presence of a core hole in molecules such as CO.  相似文献   

8.
To quantify the changes in the geometric shielding effect in a molecule as the incident electron energy varies, an empirical fraction, which represents the total cross section contributions of shielded atoms in a molecule at different energies, is presented. Using this empirical fraction, the total cross sections for electron scattering by CH4, C2H6, C2H3F3, C2H4, C2F4, C2Cl4 and C2Cl2F2 are calculated over a wide energy range from 30 to 5000 eV by the additivity rule model at the Hartree-Fock level. The quantitative total cross sections are compared with those obtained by experiment and other theories where available. Good agreement is attained above 100 eV.  相似文献   

9.
Quantitative XPS measurements have been performed in order to determine the absolute coverage of acetylene and ethylene adsorbed on Pt(111) showing a 2 × 2 LEED pattern. This LEED pattern has so far been attributed to a 2 × 2 superstructure with a coverage of 0.25. A quantitative evaluation of the C(1s) peak intensities for these adsorbed layers in comparison with adsorbed CO shows that the coverage is 0.5 instead of 0.25. Therefore the 2 × 2 LEED pattern should be assigned to a 2 × 1 superstructure in three domains rather than a 2 × 2 superstructure.  相似文献   

10.
Microwave linewidths of C2H4O (κ = -0.41) broadened by H2, N2, O2, and CO2 and considering dipole-quadrupole interactions have been calculated using the Mehrotra-Boggs theory (1977). This theory accounts satisfactorily for observed linewidths  相似文献   

11.
The chemisorption of H2, O2, CO, CO2, NO, C2H2, C2H4 and C has been studied on the clean stepped Rh(755) and (331) surfaces. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) were used to determine the size and orientation of the unit cells, desorption temperatures and decomposition characteristics for each adsorbate. All of the molecules studied readily chemisorbed on both stepped surfaces and several ordered surface structures were observed. The LEED patterns seen on the (755) surface were due to the formation of surface structures on the (111) terraces, while on the (331) surface the step periodicity played an important role in the determination of the unit cells of the observed structures. When heated in O2 or C2H4 the (331) surface was more stable than the (755) surface which readily formed (111) and (100) facets. In the CO and CO2 TDS spectra a peak due to dissociated CO was observed on both surfaces. NO adsorption was dissociative at low exposures and associative at high exposures. C2H4 and C2H2 had similar adsorption and desorption properties and it is likely that the same adsorbed species was formed by both molecules.  相似文献   

12.
The chemisorption of H2, O2, CO, CO2, NO, C2H4, C2H2 and C has been studied on the clean Rh(111) and (100) surfaces. LEED, AES and thermal desorption were used to determine the surface structures, disordering and desorption temperatures, displacement and decomposition characteristics for each species. All of the molecules studied readily chemisorbed on both surfaces. A large variety of ordered structures was observed, especially on the (111) surface. The disordering temperatures of most ordered surface structures on the (111) surface were below 100°C. It was necessary to adsorb the gases at 25° C or below in order to obtain well-ordered surface structures. Chemisorbed oxygen was readily removed from the surface by H2 or CO gas at crystal temperatures above 50°C. CO2 appears to dissociate to CO upon adsorption on both rhodium surfaces as indicated by the identical ordering and desorption characteristics of these two molecules. C2H4 and C2H2 also had very similar ordering and desorption characteristics and it is likely that the adsorbed species formed by both molecules is the same. Decomposition of ethylene produced a sequence of ordered carbon surface structures on the (111) face as a result of a bulk-surface carbon equilibrium. The chemisorption properties of rhodium appear to be generally similar to those of iridium, nickel and palladium.  相似文献   

13.
D.R. Mullins 《Surface science》2006,600(13):2718-2725
A dysprosium oxide thin film was deposited on Ru(0 0 0 1) by vapor depositing Dy in 2 × 10−7 torr O2 while the Ru was at 700 K. The film was ca. 5 nm thick and produced a p(1.4 × 1.4) LEED pattern relative to the Ru(0 0 0 1) substrate. The adsorption and reaction of CO and C2H4 adsorbed on Rh supported on the Dy2O3 film were studied by TPD and SXPS. The CO initially reacted with loosely bound oxygen in the substrate to produce CO2. After the loosely bound oxygen was removed, the CO adsorbed non-dissociatively in a manner similar to what is seen on Rh(1 1 1). C2H4 adsorbed on the Rh particles and underwent progressive dehydrogenation to produce H2 during TPD. The C from the C2H4 reacted with the O in Dy2O3 to produce CO. CO dissociation on the Rh particles could be promoted by treating the Dy2O3 with C2H4 before CO exposure.  相似文献   

14.
The pressure broadening and shift rates of the rubidium D2 absorption line 52S1/2→52P3/2 (780.24 nm) with CH4, C2H6, C3H8, n-C4H10, and He were measured for pressures ≤80 Torr using high-resolution laser spectroscopy. The broadening rates γB for CH4, C2H6, C3H8, n-C4H10, and He are 28.0, 28.1, 30.5, 31.3, and 20.3 (MHz/Torr), respectively. The corresponding shift rates γS are −8.4, −8.8, −9.7, −10.0, and 0.39 (MHz/Torr), respectively. The measured rates of Rb for the hydrocarbon buffer gas series of this study are also compared to the theoretically calculated rates of a purely attractive van der Waals difference potential. Good agreement is found to exist between measured and theoretical rates.  相似文献   

15.
16.
Transient optical Kerr effect of liquids C2H4Cl2 and C2H4Br2 is investigated, for the first time to our knowledge, with a femtosecond (fs) probe laser delayed with respect to a coherent fs pump laser. Coherent coupling and electronic Kerr signals are observed around zero delay when pump and probe overlap. Persisting after the pump-probe overlap are Kerr signals arising from the torsional and other intramolecular vibrations of the trans and gauche conformations; Kerr signals arising from the intermolecular motion are also observed. Vibrational quantum interference is only observed in liquid C2H4Br2 and the related beats data are fitted with the torsional vibrations, 91 cm−1 (gauche) and 132 cm−1 (trans), and the CCBr angle-bending vibrations, 231 cm−1 (gauche) and 190 cm−1 (trans), with dephasing times, 0.45 ps, 0.45 ps, 2 ps, and 1.5 ps, respectively. These vibrational frequencies agree with those obtained in the frequency-domain. That no vibrational mode is observed for C2H4Cl2 might be attributed to ineffective Raman-pumping. Kerr signals observed after the pump-probe overlap are Fourier transformed to give the spectra of the intermolecular motion and the vibrational spectrum, which agrees with the one observed in the infrared absorption and/or Raman scattering heretofore.  相似文献   

17.
Counterflow diffusion flame experiments and modeling results are presented for a fuel mixture consisting of N2, C2H2, and C2H4 flowing against decomposition products from a solid AP pellet. The flame zone simulates the diffusion flame structure that is expected to exist between reaction products from AP crystals and a hydrocarbon binder. Quantitative species and temperature profiles have been measured for one strain rate, given by a separation of 5 mm, between the fuel exit and the AP surface. Species measured include C2H2, C2H4, N2, CN, NH, OH, CH, C2, NO, NO2, O2, CO2, H2, CO, HCl, H2O, and soot volume fraction. Temperature was measured using a combination of a thermocouple at the fuel exit and other selected locations, spontaneous Raman scattering measurements throughout the flame, NO vibrational populations, and OH rotational population distributions. The burning rate of the AP was also measured for this flame’s strain rate. The measured eighteen scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 105 species and 660 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particles burn with the decomposition products of a polymeric binder.  相似文献   

18.
In this study, we report on the gas permeability of non-polymerized and polymerized fullerene films (thickness about 0.5 μm) grown on an organic polymer substrate, polycarbonatesyloxane (PCS), using a high vacuum deposition method. The photopolymerized C60 films were prepared by a simultaneous thin film deposition and UV-vis irradiation method which was reported previously [V.A. Karachevtsev, P.V. Mateichenko, N.Y. Nedbailo, A.V. Peschanskii, A.M. Plokhotnichenko, O.M. Vovk, E.N. Zubarev, A.M. Rao, Carbon 42 (2004) 2091]. Raman spectroscopy revealed that ∼90% of the C60 molecules are covalently linked to neighboring C60 molecules in the photopolymerized film after 20 h of film deposition/irradiation. Permeability of the resulting membranes consisting of polymer PCS base and fullerene films to the N2, O2, CH4, and He gases has been investigated. Our experiments revealed that the gas permeability properties are dependent on the age of the membrane. In particular, the aged membrane exhibited an enhanced permeability for O2 and He gases in comparison to N2 and CH4, respectively.  相似文献   

19.
Carbon-13 frequency shifts for C2H4, C2D4, and as-C2H2D2 have been measured in isotopic solid solutions in crystalline films at 60 K. All but two of the shifts (for as-C2H2D2) are compatible with recently determined ζ data for C2H4, with 13C frequency shifts for C2H4 and C2D4 in the gas phase and with conventional frequency data. Together, these data completely determine with precision all 18 parameters of the GHFF for ethylene, the previous ambiguity in choice between two sets of Ag species force constants being removed. The force field reproduces closely the observed centrifugal distortion constants for C2H4, a ζ constant observed for trans-C2H2D2, and the inertia defects for C2H4, C2D4, and as-C2H2D2. Vibration and rotation constants for all isotopically deuterated ethylenes are calculated.Possible explanations for the two anomalous crystal shifts in as-C2H2D2 involve the effects of the crystal field, and failure of the use of Dennison's rule for making anharmonic corrections to the shifts. The former explanation is preferred as a result of thorough analysis of the anharmonicity constants for as-C2H2D2 determined from many overtone and combination bands in the gas and crystal spectra.  相似文献   

20.
Pressure-broadening parameters of six lines belonging to the ν5 band of C2H2 in collision with N2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86–92 (1989)) on the broadening of C2H2 by N2 and O2 at 297 K. These N2- and O2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000(r), U200(r), and U220(r), as well as from U400(r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C2H2---O2 and in reasonable agreement (except at large J values) for C2H2---N2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C2H2---N2 and more important for C2H2---O2. Finally, by calculating the collisional linewidths of C2H2---N2 and C2H2---O2 at 200 K, we have predicted their temperature dependences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号