首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the EELS results revealed the great sensitivity of InP compound submitted to Ar+ or N+ ions at low energy. The preliminary treatment of InP by the Ar+ ions was useful as part of the cleaning process of the surface. Further argon ions bombardment on cleaned InP led however to breaking of chemical bonds In–P, with desorption of phosphorus atoms and appearance of In metal distributed on InP. The damaged InP by Ar+ ions, constituted the diphase (In; InP) system of depth of about 30 Å, involving a superficial roughness. The In metal proportion on such a system was determined by a calculation method based on the experimental EELS spectra of pure In and InP.We submitted the heated and no heated system (In; InP) to nitrogen ions bombardment. The nitrogen reacted with the In metal to compensate the phosphorus vacancies so that InN species were formed. The heating of (In; InP) system at 450 °C, allowed the surface reconstruction with elimination of defects due to the structure and the roughness. The temperature also caused the coalescence of In metal towards the surface. Because of the physical stability of the interface of heated (In; InP) system, the nitrogen reacted with the outmost layers of In metal to form a homogeneous layer of InN of thickness estimated at 20 Å. We associated to the EELS the TRIM (Transport and Range of Ions in Matter) simulation method in order to show the mechanism of interaction Ar+ or N+ ions-InP and determine the disturbed depth as a function of the energy. The EELS alone was not able to give us with accuracy the disturbed depth of the target by these ions.  相似文献   

2.
The interaction of ions with matter plays an important role in the treatment of material surfaces. In this paper we study the effect of argon ion bombardment on the InSb surface in comparison with the InP one. The Ar+ ions, accelerated at low energy (300 eV) lead to compositional and structural changes in InP and InSb compounds. The InP surface is more sensitive to Ar+ ions than that of InSb. These results are directly inferred from the qualitative Auger electron spectra (AES) and electron energy loss spectroscopy (EELS) analysis. However, these techniques alone do not allow us to determine with accuracy the disturbed depth in Ar+ ions of InP and InSb compounds. For this reason, we combine AES and EELS with the simulation method TRIM (transport and range of ions in matter) to show the mechanism of interaction between the ions and the InP or InSb and hence determine the disturbed depth as a function of Ar+ energy.  相似文献   

3.
Liquid phase deposited SiON film on InP with (NH4)2S treatment shows superior electrical characteristics due to the reduction of native oxides and sulfur passivation. Simultaneously, HF in SiON liquid phase deposition solution can effectively reduce residual native oxides on InP and provide fluorine passivation in SiON/InP film and interface. With post-metallization annealing (PMA), hydrogen ions can further passivate defects in SiON/InP film and interface. With these treatments, the PMA-LPD-SiON/(NH4)2S-treated InP MOS structure shows excellent electrical characteristics. With the physical thickness of 5.4 nm, the leakage current densities can be as low as 1.25×10?7 and 6.24×10?7 A/cm2 at ±2 V, and the interface state density is 3.25×1011 cm?2?eV?1.  相似文献   

4.
Large signal characterisation of double heterostructure DDR Impatt diode has been carried out in the millimeter-wave range considering the MITATT mode of operation. The structure of the device is p+-p2-p1-n1-n2-n+ where impact ionisation and tunneling takes place in the p1-n1 region. In this study we have considered two well-known heterostructures, e.g., InP/GaInAs/InP and InP/InGaAsP/InP and one nonconventional structure GaAs/InP/GaAs. The theoretical results of the performances of these devices as regards of output power, efficiency, and negative conductance revealed that the structures are quite promising as the source of power in the millimeter-wave range. The analysis may be used for other mm wave DDR heterostructure Impatts.  相似文献   

5.
Surface and bulk properties of indium phosphate single crystals with initial and previously irradiated by 25 MeV electrons structures were irradiated with 86Kr (253 MeV) and 197Au (200 MeV) up to various fluences. The modern methods of condensed matter studies were used for research of InP property changes before and after irradiation as scanning (SEM) and high resolution transmission electronic microscopy (HTEM), Rutherford backscattering spectroscopy (RBS/C) and atomic force microscopy (AFM). The comparison of obtained results with the results of other authors is carried out. The surface structure change of InP single crystal irradiated by high-energy 86Kr ions and electrons is studied. It is shown the changes of the InP surface have complicated character and caused by inelastic sputtering processes. It is observed the twice irradiated layer swells with the cracks creation on the surface. The swelling with cracks and strong sputtering of twice irradiated by electrons and ions with high energy layers of the InP and GaAs surfaces are explained using the model based on the influence of ionizing energy loss of swift 86Kr ions. The small crystalline objects are detected on the InP surface irradiated with 86Kr ions which may be nano- and micro-crystals of InP. All obtained effects are discussed in frame of models based on ionizing energy loss of swift heavy ions.  相似文献   

6.
Straight nanometer-sized pore arrays are formed on an n-InP (1 0 0) surface by electrochemical anodization in HCl-based electrolytes. Raman scattering spectra are measured and compared to those of the bulk InP. Two new peaks around 299 and 304 cm−1 are observed for porous InP. The peak at 299 cm−1 is attributed to a TO phonon mode observable due to a breakdown of polarization selection rule in the case of nanometer-sized crystallites. The peak at 304 cm−1 is suggested to be a surface-related vibration mode. In addition, the Raman signals of the porous InP are intensified up to 20–25 times than that of the bulk InP. The reason for such strong enhancement is not clear and is under further investigation.  相似文献   

7.
《Surface science》1994,304(3):L468-L474
High-resolution transmission electron microscopy proved that the cone evolution on Ar+-sputtered InP(100) entails the growth of In crystallites on the cone surface, obviously due to a preferential loss of P atoms. The In crystallites grew on the cone shank, as well as the cone tip, in a definite orientation formulated as InP(011) ∥ In(010) with InP[001] ∥ In[101̄]. The cones themselves were solely composed of InP, but involved the polycrystalline phase surrounding the original monocrystalline phase. Such a structural duality of InP cones may indicate that the target surface was in a quasi-liquid state during sputtering.  相似文献   

8.
The aim of the present study is to demonstrate the feasibility to form well-ordered nanoholes on InP(1 0 0) surfaces by low Ar+ ion sputtering process in UHV conditions from anodized aluminum oxide (AAO) templates. This process is a promising approach in creating ordered arrays of surface nanostructures with controllable size and morphology. To follow the Ar+ ion sputtering effects on the AAO/InP surfaces, X-ray photoelectron spectroscopy (XPS) was used to determine the different surface species. In4d and P2p core level spectra were recorded on different InP(1 0 0) surfaces after ions bombardment. XPS results showed the presence of metallic indium on both smooth InP(1 0 0) and AAO/InP(1 0 0) surfaces. Finally, we showed that this experiment led to the formation of metallic In dropplets about 10 nm in diameter on nanoholes patterned InP surface while the as-received InP(1 0 0) surface generated metallic In about 60 nm in diameter.  相似文献   

9.
Indium phosphide (InP) quantum dots (QDs) are ideal substitutes for widely used cadmium-based QDs and have great application prospects in biological fields due to their environmentally benign properties and human safety. However, the synthesis of InP core/shell QDs with biocompatibility, high quantum yield (QY), uniform particle size, and high stability is still a challenging subject. Herein, high quality (QY up to 72%) thick shell InP/GaP/ZnS core/shell QDs (12.8 ± 1.4 nm) are synthesized using multiple injections of shell precursor and extension of shell growth time, with GaP serving as the intermediate layer and 1-octanethiol acting as the new S source. The thick shell InP/GaP/ZnS core/shell QDs still keep high QY and photostability after transfer into water. InP/GaP/ZnS core/shell QDs as fluorescence labels to establish QD-based fluorescence-linked immunosorbent assay (QD-FLISA) for quantitative detection of C-reactive protein (CRP), and a calibration curve is established between fluorescence intensity and CRP concentrations (range: 1–800 ng mL−1, correlation coefficient: R2 = 0.9992). The limit of detection is 2.9 ng mL−1, which increases twofold compared to previously reported cadmium-free QD-based immunoassays. Thus, InP/GaP/ZnS core/shell QDs as a great promise fluorescence labeling material, provide a new route for cadmium-free sensitive and specific immunoassays in biomedical fields.  相似文献   

10.
Plasmon peaks along with Auger PLVV peak have been observed in the ultraviolet photoelectron spectra (UPSs) of InP after 5 min of sputtering with 0.5 kV Ar+ ions. Plasmon and Auger peaks are not observed in UPS of un-sputtered InP surface with native oxides of In and P. Filled electron energy levels are not observed near the Fermi level from 5 min sputtered InP surface due to increase of ionization potential of nano In clusters.  相似文献   

11.
The temperature dependence of the thermal expansion for GaAs and InP is investigated theoretically using the experimental pressure derivatives of elastic stiffness constants and phonon frequencies. The linear correlation between the transverse acoustical mode Grüneisen parameter γXTA and the metallic transion pressure Pt obtained by Weinstein is not satisfied for GaAs and InP, but the observed thermal expansion of GaAs is well reproduced. In addition, the linear expansion coefficient of InP is predicted theoretically as a function of temperature. Then, the phonon dispersion curves of GaAs and InP at their covalent-metallic transition pressures are quantitatively shown.  相似文献   

12.
Indium phosphide (InP) semiconductor nanoparticles were obtained by laser ablation of a crystalline wafer in water. The transmission electron microscopy micrographs of the nanoparticles show that their size is in the range of 100 nm. In the Raman spectrum of the nanoparticles, the characteristic peaks of InP have been observed in the vicinity of 300 and 340 cm−1. The binding energies as measured from the X-ray photoemission spectra are consistent with values for InP crystal as well as indium oxides.  相似文献   

13.
The impurity effect on the creation of point-defects in 60-keV Be+-ion implanted GaAs and InP has been studied by a slow positron beam. Vacancy-type defects introduced by ion implantation were observed in n-type GaAs. For p-type GaAs, however, this was not the case. This can be attributed to the recombination of vacancy-type defects with pre-existing interstitial defects in p-type GaAs. In the case of InP, the vacancy-type defects were created by ion implantation and increased with the implantation dose. However, no significant doping effect was observed in InP.  相似文献   

14.
The objective of this study is to investigate how the surface characteristics of indium phosphide (InP) can be modified through the use of atomic hydrogen (H*) cleaning and silicon interfacial control layers (Si ICL), prior to the deposition of MgO dielectric layers. X-ray photoelectron spectroscopy (XPS) analysis shows that the InP native oxide can be successfully removed using atomic hydrogen cleaning at a substrate temperature of 300 °C. However, atomic force microscopy (AFM) images display evidence for the growth of metallic In island features after H* cleaning, and subsequent deposition of MgO thin films on the H* cleaned surface resulted in high levels of interfacial indium oxide growth. It has also been shown that the deposition of thin (∼1 nm) Si layers on InP native oxide surfaces results in the transfer of oxygen from the InP substrate to the Si ICL and the formation of Si-InP bonds. XPS analysis indicates that MgO deposition and subsequent 500 °C annealing results in further oxidation of the Si layer. However, no evidence for the re-growth of interfacial In or P oxide species was observed, in contrast to observations on the H* cleaned surface.  相似文献   

15.
Five types of passive Q-switched as well as simultaneously Q-switch mode-locked modulators: plastic dye sheets (Kodak 9850 cellulose acetate dye sheets), lithium fluoride crystals containing F2 color centers (LiF:F2 ), chromium-doped yttrium–aluminum–garnet crystals (Cr4+:YAG), ionic color filter glass (Schott RG1000 color filter glass), and the single crystal semiconductor wafers (GaAs, Fe-doped InP, Zn-doped InP, S-doped InP, etc.) used for modulation of the Nd:hosted(Nd:YAG, Nd:YVO4, and Nd:LSB) lasers were investigated in detail in our research. We also investigated applications of the Q-switch mode-locked pulse train for the development of a higher resolution solid-state laser range finder.  相似文献   

16.
Zn-doped InP and GaInPAs layers were grown by OrganoMetallic Vapor-Phase Epitaxy (OMVPE). The epitaxial films consist of a primary GaInPAs/InP epitaxial layer and a secondary InP/GaInAs epitaxial layer. We present evidence that the redistribution of Zn acceptors in the primary epitaxial layer is strongly influenced by the Zn doping concentration in the secondary epitaxial layer. Rapid redistribution of Zn acceptors in the primary epitaxial layer occurs if the Zn doping concentration in the secondary epitaxial layer exceeds a critical concentration ofN Zn3×1018cm–3. The influence of the growth temperature on this effect is also presented.  相似文献   

17.
We study the mechanism of ordered growth of InAs quantum dots (islands) on a GaAs/InP substrate in theory and point out that the tensile strain can be used to control InAs/InP self-assembled quantum dots arrangement. Photoluminescence spectrum, and atomic force microscopy images have been investigated. In the experiment, ordered InAs islands have been obtained and the maximum density of quantum dots is 1.6×1010 cm−2 at 4 monolayers InAs layer.  相似文献   

18.
 Four-inch InP wafers were implanted with 100 keV helium ions with a dose of 5×1016 cm−2 and subsequently annealed in air in the temperature range of 225-400°C in order to determine the blistering kinetics of these wafers. An Arrhenius plot of the blistering time as a function of reciprocal temperature revealed two different activation energies for the formation of surface blisters in InP. The activation energy was found to be 0.30 eV in the higher temperature regime of 300-400 °C and 0.74 eV in the lower temperature regime of 225-300 °C. The implantation induced damage was analyzed by cross-sectional transmission electron microscopy, which revealed a band of defects extending from 400-700 nm from the surface of InP. The damage band was found to be decorated with a large number of nanovoids having diameters between 2 and 5 nm. These nanovoids served as precursors for the formation of microcracks inside InP upon annealing, which led to the formation of surface blisters.  相似文献   

19.
A generalized small-signal computer simulation of double avalanche region (DAR) n +-p-v-n-p + Si and InP IMPATT diodes has been carried out for different frequencies and current densities taking both drift and diffusion of charge carriers into account. The simulation results show that both symmetrically and asymmetrically doped devices based on Si and InP exhibit discrete negative conductance frequency bands separated by positive conductance frequency bands. The magnitudes of both negative conductance and negative resistance of InP devices are larger than those of Si devices in case of symmetrical and asymmetrical diodes. Further, the negative resistance profiles in the depletion layer of these diodes exhibit a single peak in the middle of the drift layer in contrast to double peaks in double drift region diodes.  相似文献   

20.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号