首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tris(1‐methylimidazolium) bis(1‐methylimidazole)hexacosaoxidooctamolybdatesodium, (C4H7N2)3[NaMo8O26(C4H6N2)2], prepared from an aqueous solution containing Na2MoO4 and 1‐methylimidazole, contains the novel chain‐like anion 1[NaMo8O26(mim)2]3 (mim is 1‐methylimidazole). The [Mo8O26(mim)2]4− building unit, which lies across a center of inversion, is comprised of eight edge‐sharing MoO6 and MoO5(Nmim) octahedra. These molybdate units are interlinked by sodium, itself exhibiting a sixfold coordination with O atoms.  相似文献   

2.
The Reaction of Molybdenum with 2,3-Dihydroxynaphthalene   总被引:1,自引:0,他引:1  
[H2N(CH2)3NH312[MoO2(C10H6O2)2] (1) was synthesized by the 2,3-dihydroxynaphthalene in the mixed solvent of CH3OH, CH3CN reaction of (n-Bu4N)4[Mo8O26] with and 1,3-propanediarnine. (C5HllN2)2- [HeN(CH2)3NH2][MoO2(CloH6O2)2] (2) was obtained by the reaction of Na2MoO4.2H20 with 2,3-dihydroxynaphthalene in the same solvent above. Both of the complexes possess complex anion [Mo(VI)O2(OC10H6O)2]^2- which shows pseudo-octahedrally coordinated fashion, while the counterions are two protonated 1,3-propanediamine in complex 1 and (CsH11N2)^+ in complex 2. (C5H11N2)+ is the byproduct of reaction 2, which results from combination of acetonitrile with 1,3-propanediamine. Packing diagrams of the two complexes are also different. There is anti-parallel-aligned-double-meso-bilayer unit in complex 1. However there are four chiral anions arranged in anticlockwise orientation in complex 2.  相似文献   

3.
Electron-impact-induced mass spectra of MoO2(C5H7O2)2, 1, and Mo2O3(C5H7O2)4, 2, recorded at an ion-source temperature of 100°C show the molecular ion signals at m/z 328 and at m/z 636, respectively, indicating that they do not undergo association in the vapour state. The parent ion of 1, unlike bis(acetylacetonato)metalates of the first-row transition metals, loses (CH2CO followed by C3H5O to produce [MoO2(C5H7O2)]+ at m/z 229, the base peak, which ultimately fragments to [MoO2]+. The molecular ion of 2, [Mo2O3(C5H7O2)4]+, undergoes fragmentation following two different, but equally probable, pathways with one involving the loss of C5H7O2 and C5H7O groups producing the ion [Mo2O4(C5H7O2)2]+, and the other involving the formation of the ion [MoO(acac)2]+ directly from the parent ion. The signal at m/z 312 owing to the ion [MoO(C5H7O2)2]+ constitutes the base peak in the spectrum of 2. Metastable transitions were studied, and the most probable fragmentation schemes for the compounds 1 and 2 are suggested. There is evidence for CH3 shift from the ligand to the oxygen atoms bound to the metal centres or to form metal-carbon bonds.  相似文献   

4.
《Polyhedron》1999,18(21):2781-2785
The compounds (NH4)6[Mo6V2O24(C2O4)2]·6H2O (I) and (NH4)4[H2Mo2V2O12(C2O4)2]·2H2O (II) have been prepared from molybdenum(VI) oxide and ammonium vanadate in aqueous solution through the addition of ammonium oxalate, and their structures determined by X-ray structure analysis. Whereas the molybdovanadate anion [Mo6V2O24(C2O4)2]6− found in (I) consists of six MoO6 and two VO6 edge-sharing octahedra of the γ-[Mo8O26]4− type structure, the tetranuclear anion [H2Mo2V2O12(C2O4)2]4− of (II) adopts the structure with a M4O16 core. Both complexes contain bidentate oxalato ligands bonded to the vanadium ions. In both crystal structures the molybdovanadate anions are mutually hydrogen bonded by ammonium ions and water molecules.  相似文献   

5.
Two new organic–inorganic hybrid cobalt-molybdovanadates [Co(phen)3]H2[H2V2Mo6O26] · 7H2O (1) and [Co(2,2′-bipy)3][Na(H2O)7][VMo12O40] (2) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR, UV, XPS spectroscopy, thermogravimetric (TG) analyses, and X-ray single crystal diffraction. The molecular structure of 1 consists of a [V2Mo6(OH)2O24]4? polyoxoanion, a [Co(phen)3]2+, two H+ and seven lattice water molecules. The structure of [V2Mo6(OH)2O24]4? consists of six MoO6 octahedra and two VO4 tetrahedra; six MoO6 octahedra are linked by edge-sharing oxygens forming a {Mo6} ring, and two VO4 tetrahedra cap opposite sides of the {Mo6} ring. The molecular structural unit of 2 is constructed from a typical Keggin-type [VMo12O40]3? polyoxoanion and a [Co(2,2′-bipy)3]2+ cation and a Na+ countercation; Co2+ is coordinated by six nitrogens from three 2,2′-bipyridines forming a distorted octahedron.  相似文献   

6.
New Osooxalatocomplexes of Molybdenum (VI) The preparation of the compounds Cs2[Mo2O5F2(C2O4)] · H2O and Cs2[Mo2O4Cl4(C2O4)] · 2 H2O is reported. The structure of the complex anions, which are containing quadridentated oxalate ligands, is derived from their vibration spectra. The compounds [NR4]2[Mo2O4F4(C2O4)] with R = CH3 and C2H5 are examined for comparison.  相似文献   

7.
Summary Addition of Na2MoO4 to an excess of aspartic acid (AspH2) can produce any of four different complexes depending on the pH, namely [MoO3(Asp)]2–, [Mo2O5(Asp)2]2–, [Mo2O4(OH)(Asp)2] and [Mo2O4(Asp)2]. The ranges of formation of these species with pH, the number of equivalents of acid necessary for their formation, and their stoichiometries, condensation degrees and stability constants, have been calculated by potentiometric and spectrophotometric techniques. The aspartic acid acts as a tridentate ligand in all cases.  相似文献   

8.
The compound (H3O)2{(Na2(OH)CB[5])2[HV4O12]}Cl · 14H2O is synthesized by heating (120°C) of a mixture of sodium vanadate, cucurbit[5]uril (CB[5]), rubidium chloride, and water in a sealed ampule. According to the X-ray diffraction data, the binding of the [Na2(OH)]+ binuclear cation with CB[5] occurs due to the bidentate coordination of the oxygen atoms of the portals of cucurbit[5]uril to the sodium atoms. The tetranuclear vanadium complex [HV4O12]3? serves as a bridge, joining infinite chains {Na2(OH)CB[5]} + in pairs.  相似文献   

9.
The synthesis of MoVI bisphosphonates (BPs) complexes in the presence of a heterometallic element has been studied. Two different BPs have been used, the alendronate ligand, [O3PC(C3H6NH3)(O)PO3]4? (Ale) and a new BP derivative with a pyridine ring linked to the amino group, [O3PC(C3H6NH2CH2C5H4N)(O)PO3]4? (AlePy). Three compounds have been isolated, a tetranuclear MoVI complex with CrIII ions, (NH4)5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Cr]·11H2O (Mo4(Ale)2Cr), its MnIII analogue, (NH4)4.5Na0.5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Mn]·9H2O (Mo4(Ale)2Mn), and a cocrystal of two polyoxomolybdates, (NH4)10Na3[(Mo2O6)2(O3PC(C3H6NH2CH2C5H4N)(O)PO3)2Cr]2[CrMo6(OH)6O18]·37H2O ([Mo4(AlePy)2Cr]2[CrMo6]). In this latter compound an Anderson-type POM [CrMo6(OH)6O18]3? is sandwiched between two tetranuclear MoVI complexes with AlePy ligands. The protonated triply bridging oxygen atoms bound to the central CrIII ion of the Anderson anion develop strong hydrogen bonding interactions with the oxygen atoms of the bisphosphonate complexes. The UV–Vis spectra confirm the coexistence in solution of both POMs. Cyclic voltammetry experiments have been performed, showing the reduction of the Mo centers. In strong contrast with the reported MoVI BP systems, the presence of trivalent cations in close proximity to the MoVI centers dramatically impact the potential solid-state photochromic properties of these compounds.  相似文献   

10.
Reactions of an acidified aqueous solution of Na2MoO4 · 2H2O with 3-mercaptopropionic acid, 2-mercaptomethylethanoate and 3-mercaptomethyl propanate yield blue oxo-bridged MoV complexes of the type [Mo2O3L4], whereas corresponding reactions with 2-aminophenol, 2-aminobenzyl alcohol, salicylaldehyde and 2-methyl-8-hydroxyquinoline, yield yellow dioxomolybdenum(VI) complexes, [MoO2L′2]. All these coloured solids are sparingly soluble, even in coordinating solvents. They have been characterized by elemental and spectroscopic analysis.  相似文献   

11.
The thermal decomposition of pure ammonium heptamolybdate tetrahydrate (AHMT), and doped with Li+, Na+ and K+ ions was investigated using thermogravimetry, differential thermal analysis, infrared and X-ray diffraction techniques. Results obtained revealed that the decomposition of AHMT proceeded in three decomposition stages in which both NH3 and H2O were released in all stages. The presence of 0.5 mol % alkali metal ions enhances the formation of the intermediateb (NH4)2MO7O22·2H2O while the decomposition of this intermediate into MoO3 is slightly affected in the presence of all dopant concentrations used. The infrared absorption spectra of the thermal products of AHMT treated with 10 mol% alkali metal ions (AMI) at 350°C indicated a reduction of some Mo6+ ions. By heating of AHMT above 500°C in presence of 5 or 10 mol % of AMI, a solid-solid interaction between alkali metal oxides and MoO3 giving rise to well crystallized alkali metal molybdates. finally the activation energies accompanied various decomposition stages were calculated.  相似文献   

12.
What is “Molybdic Acid” or “Polymolybdic Acid”? According to a comparative study of the literature, supplemented by well-aimed experimental investigations and equilibrium calculations, the terms “molybdic acid” or “polymolybdic acid”, used for many substances, species, or solutions in the literature, are applicable to a species, a solution, and two solids:
  • a) The monomeric molybdic acid, most probably having the formula MoO2(OH)2(H2O)2(? H2MoO4, aq), exists in (aqueous) solution only and never exceeds a concentration of ≈ 10?3 M since at higher concentrations it reacts with other monomemeric molybdenum (VI) species to give anionic or cationic polymers.
  • b) A concentrated (>0.1 M MoVI) aqueous molybdate solution of degree of acidification P = 2 (realized, e. g., by a solution of one of the MoVI oxides; by any molybdate solutions whose cations have been exchanged by H3O+ on a cation exchanger; by suitable acidification of a molybdate solution) contains 8 H3O+ and the well-known polyanion Mo36O112(H2O)168? exactly in the stoichiometric proportions.
  • c) A glassy substance, obtained from an alkali metal salt-free solution prepared according to (b), refers to the compound (H3O)8[Mo36O112(H2O)16]·xH2O, x = 25—29.
  • d) A solid having the ideal composition [(H3O)Mo5O15(OH)H2O·H2O]∞ consists of a polymolybdate skeleton (the well-known ?decamolybdate”? structure), in the tunnels of which H3O+ and H2O are intercalate. The structure is very unstable if only H3O+ cations are present, but it is enormously stabilized by a partial exchange of H3O+ by certain alkali or alkaline earth metal cations.
For the compounds MoO3, MoO3·H2O, and MoO3·2H2O the term ?molybdic acid”? is unjustified. The commercial product ?molybdic acid, ≈85% MoO3”? is the well-known polymolybdate (NH4)2O·4 MoO3 with a layer structure of the polyanion.  相似文献   

13.
The compound of composition [{Mo3O4(H2O)6Cl3}2(Na2Cl⊂ C30H30N 20O10)]Cl3⋅14H2O (1) was prepared by evaporation of a hydrochloric acid solution containing NaCl, the trinuclear aqua complex [Mo3O4(H2O)9]4+, and the macrocyclic cavitand cucurbit[5]uril (C30H30N20O10). X-ray diffraction analysis demonstrated that the cucurbit[5]uril molecule is closed on both sides by the cluster cations through hydrogen bonding between the CO groups of the cucurbit[5]uril portals and the aqua ligands of the oxo cluster. The inner cavity of the supramolecular adduct includes an unusual ionic associate Na+...Cl...Na+. The sodium cations are coordinated by five carbonyl oxygen atoms of each portal of the macrocycle. Compound 1 is the first structurally characterized complex, in which the macrocyclic cucurbit[5]uril ligand is directly coordinated to the alkali metal cation. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1513–1517, July, 2005.  相似文献   

14.

The oxalato complex of a polyoxomolybdovanadate, K6[Mo6V2O24(C2O4)2]·6H2O has been obtained by reaction of potassium molybdate, ammonium vanadate and tartaric or ascorbic acid. Such conversion of dicarboxylate into oxalate ions indicates the catalytic role of molybdenum. Complexes of analogous composition also were obtained in the reactions of MoO3, V2O5 and potassium oxalate, or M 2CO3 (M = Rb, Cs) and oxalic acid. The centrosymmetrical molybdovanadate anion [Mo6V2O24(C2O4)2]6- consists of six MoO6 and two VO6 edge-sharing octahedra to give the n -[Mo6O26]4- structure. All complexes were characterized by powder and single crystal X-ray analyses, ESR and IR spectra and TG and DSC measurements.  相似文献   

15.
The reactions of the [Mo33-Q)(μ2-Q)3(H2O)3(C2O4)3]2− complex (Q = S or Se) with CuX salts (X = Cl, Br, I, or SCN) in water produce the cuboidal heterometallic clusters [Mo3(CuX)(μ3-Q)4(H2O)3(C2O4)3]2−, which were isolated as the potassium and tetraphenylphosphonium salts. Two new compounds, K2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3]·6H2O and (PPh4)2[Mo3(CuBr)(μ3-S)4(H2O)3(C2O4)3]·7H2O, were structurally characterized. All compounds were characterized by elemental analysis and IR spectroscopy. The K2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] compound was characterized by the 77Se NMR spectrum; the (PPh4)2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3], (PPh4)2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] and K2[Mo3(CuSCN)(μ3-S)4(H2O)3(C2O4)3]·7H2O compounds, by electrospray mass spectra. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1639–1644, September, 2007.  相似文献   

16.
The title compound, [NaLaMo8O26(C3H7NO)7]n, contains infinite chains of [Mo8O26]4− units supporting di­methyl­form­amide‐coordinated LaIII cations and linked by Na+ cations. The lanthanum center adopts a nine‐coordinate geometry and the Na atom is sandwiched between two β‐[Mo8O26]4− units.  相似文献   

17.
The crystal structure of the title compound, (C4H15N3)2[Mo5O15(HPO4)2]·4H2O, is made up of [Mo5O15(HPO4)2]4− clusters, iminodiethylenediammonium cations and solvent water mol­ecules. The [Mo5O15(HPO4)2]4− cluster, with approximate C2 symmetry, can be considered as a ring formed by five distorted edge‐ and corner‐sharing MoO6 octa­hedra, capped on both poles by a hydro­phosphate tetra­hedron. There exist N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds between the organic ammonium groups and the clusters, with inter­atomic N⋯O distances ranging from 2.675 (3) to 2.999 (3) Å, and C⋯O distances ranging from 3.139 (5) to 3.460 (5) Å.  相似文献   

18.
The complex Rb2[Mo2O5(C2O4)2(H2O)2] (RMO) was prepared and characterized by means of chemical analysis and IR spectral studies. Its thermal decomposition was studied by using TG and DTA techniques. RMO loses its water between 160 and 200°C, this immediately being followed by the decomposition of anhydrous RMO, which takes place in three stages. The first two stages occur in the temperature ranges 200–220 and 220–255°, to give intermediates with tentative compositions Rb8[Mo8O22(C2O4)6] and Rb8[Mo8O26(C2O4)(CO3)], respectively, the latter then decomposing in the third stage between 255 and 340° to give the end-product, rubidium dimolybdate (Rb2Mo2O7). Thed spacings for Rb2Mo2O7 are given for 2θ values between 10 and 70°.  相似文献   

19.
In the presence of N, N′‐dicyclohexylcarbodiimide (DCC), (Bu4N)2[Mo6O18(NAr)] ( 1 ) and (Bu4N)2[Mo6O17(NAr)2] ( 2 ), Ar = o‐CH3C6H4, have been synthesized via the reaction of [α‐Mo8O26]4— with o‐toluidine. If the hydrochloride salt of o‐toluidine was added into the reactive mixture, only the monofunctionalized imido derivative of [Mo6O19]2— was obtained; the bifunctionalized derivative of [Mo6O19]2— was exclusively synthesized in the presence of non‐protonated o‐toluidine. The molecular and crystal structures of the hybrid compounds 1 and 2 were determined by X‐ray single crystal diffraction, and their UV, IR and NMR spectra were compared. Additionally, a possible reaction mechanism was proposed.  相似文献   

20.
(NEt4)2[WIVO(S2C2(CN)2)2] (1), isolated by reaction of Na2 WO4, Na2S2C2(CN)2 (Na2mnt) in acidified (pH5.5) aqueous medium in the presence of excess of sodium dithionite and NEt4Br, reduces CO2/HCO 3 (pH 7.5) to yield HCOO and (NEt4)2[WVIO2(S2C2(CN)2)2] (2) mimicking tungsten-formate dehydrogenase (W-FDH) activity. (1) reacts with Na2MoO4 in acidic medium to produce [MoIvO(S2C2(CN)2)2]2− implicating the displacement of tungsten by molybdenum from the cofactor complex in W-FDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号