首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semiclassical formulation of inelastic atom-surface scattering is presented. This formulation is a mixture of classical S-matrix theory and a classical path model. A Debye-Waller factor enters this theory very naturally as the probability of elastic reflection in the presence of inelastic channels. Because of its importance the Debye-Waller factor is discussed in some detail. Finally, assuming a simplified model of the gas-surface system, the whole scattering problem is solved analytically.  相似文献   

2.
A.C. Levi  H. Suhl 《Surface science》1979,88(1):221-254
The Debye-Waller factor, introduced historically for X-rays, was used later for electrons, neutrons, and atoms as well. In this process of extension, however, the assumptions on which the Debye-Waller theory rested became more and more questionable until in the case of atoms (whose scattering from surfaces is both strong and slow) serious modifications are necessary. In the present article four models are discussed in order. In Model 1 a fast atom impinges on a surface whose atoms all vibrate deviating from their equilibrium positions by the same vector displacement ?. In Model 2 again the impinging atom is fast, but the atoms in the surface vibrate incoherently rather than coherently. It is shown that both Models 1 and 2 yield the conventional Debye-Waller result in the infinite crystal atom mass limit (for Model 2 Einstein oscillators have also to be assumed) and it is also shown how corrections to this result can be built. Turning then to slow impinging atoms, in Model 3 a slow atom impinges on a hard crystal surface, interacting with the rapidly varying potential of the vibrating solid. Model 3 is discussed in detail and it is shown that the Debye-Waller exponent can be written in terms of a time integral of the product of two correlations: the force correlation and the displacement correlation. The result is a dramatic increase of diffraction of relatively heavy atoms (with respect to the conventional theory). Finally, in Model 4 the impinging atom is again slow but the crystal is soft rather than hard. This case is more difficult to treat but a preliminary analysis again indicates a dramatic increase of diffraction since the soft solid adjusts itself to the instantaneous atom position leading to elastic scattering. The experimental implications of the present theory, especially for neon scattering from surfaces, are discussed.  相似文献   

3.
An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant λ. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components λQ,ν defined by the relationship λ = 〈λQ,ν〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the λQ,ν, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to λ and for simple metals, metal overlayers, and other kinds of conducting surfaces values of λ are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant λ shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.  相似文献   

4.
A model pseudopotential depending on an effective core radius but otherwise parameter free is used to study the binding energy, equation of state, ion-ion interaction, phonon dispersion curves (q-space and r-space analysis), phonon density of states, Debye temperature, mode Grüneisen parameters, dynamical elastic constants, Debye-Waller factor, mean-square displacement, Debye-Waller temperature parameter and propagation velocities of elastic waves of some fcc f-shell metals La, Yb, Ce, and Th. The contribution of the s-like electrons is calculated in the second-order perturbation theory for the model potential while d- and f-like electron is taken into account by introduction of repulsive short-range Born-Mayer term. Very recently proposed screening function due to Sarkar et al. has been used to obtain the screened form factor. The parameter of the potential is evaluated by zero pressure condition. Which is independent of any fitting procedure. An excellent agreement between theoretical investigations and experimental findings prove the ability of the potential for d- and f-shell metals exclusively.  相似文献   

5.
The projectile-nucleon scattering amplitudes used as input into multiple scattering theories of projectile-nucleus scattering naturally include the effects of coupling to inelastic (i.e., production) channels. We employ a multichannel separable potential to describe the projectile-nucleon interaction and show that within the fixed nucleon framework we can obtain the nuclear elastic scattering amplitude. This includes terms outside the conventional formalisms, corresponding to intermediate propagation in the inelastic channels both above and below inelastic threshold. We refer to this as inelastic shadowing. In a two-channel approximation, we show that knowledge of the projectile-nucleon elastic scattering phase shifts plus specification of the inelastic threshold energy are sufficient to determine the off-shell coupled-channel transition matrix, implying that the nuclear amplitude can be calculated within this model without any detailed information about the inelastic channels. We study this solution quantitatively for some model problems and for pion scattering, with the general result that inelastic shadowing can be significant whenever the elementary interaction has important channel coupling. For pion scattering in the energy regime characterized by strongly absorptive resonances, we find, for example, that the effect of inelastic shadowing is much more important than that due to two-nucleon correlations.  相似文献   

6.
7.
Mössbauer gamma-ray diffraction was applied to separate the elastic and inelastic scattering intensities from the (200), (400) and (600) Bragg reflections of KCN. The energy resolution of our experiment was 60 neV. The Debye-Waller factor extracted from the elastic data and the thermal diffuse inelastic data both increase towards phase transition, theoretically a logarithmic singularity was predicted.  相似文献   

8.
Starting from coupled-channels equations, we use suitable approximations to derive effective interaction potentials for elastic heavy-ion scattering. These potentials are local, complex and l-dependent, and determined solely by the transition form factors and the zero-order elastic S-matrix elements. Although here we treat the couplings in first order only, our method can easily be extended to higher-order coupling by iteration. As examples we give explicit expressions for coupling to inelastic collective channels, by both Coulomb and nuclear excitation, and to transfer reaction channels. Aside from identifying the dynamical origin of various components of the total elastic interaction, we suggest that our potentials (or appropriate generalizations thereof) may be used in conventional optical model and DWBA codes as a simple substitute for coupled-channels calculations.  相似文献   

9.
A model pseudopotential depending on an effective core radius treated as a parameter is used for alkaline earth metals in bcc and fcc phases to study the Binding energy, Interatomic interactions, phonon dispersion curves, Phonon density of states, Debye-Waller factor, mean square displacement, Debye-Waller temperature parameters, dynamical elastic constants (C11, C12 and C44), bulk modulus (B), shear modulus (C′), deviation from Cauchy relation (C12C44), Poisson's ratio (σ), Young's modulus (Y), behavior of phonon frequencies in the elastic limit independent of the direction (Y1), limiting value in the [1 1 0] direction (Y2), degree of elastic anisotropy (A) and propagation velocities of the elastic waves. The contribution of s-like electrons is incorporated through the second-order perturbation theory due to model potential. The theoretical results are compared with the existing experimental data. A good agreement between theoretical investigations and experimental findings has confirmed the ability of our potential to yield large numbers of lattice mechanical properties of certain alkaline earth metals.  相似文献   

10.
Mössbauer γ-ray diffraction was used to discriminate between the elastic and inelastic scattering intensities from the (1 1 1) to (5 5 5) Bragg reflections of a single crystal of KCN. The energy resolution of our experiment was 28 neV. We observe pronounced inelastic peaks at each Bragg point, while the elastic scattering dies out rapidly due to a large Debye-Waller factor. Thus in case of (4 4 4) and (5 5 5) the inelastic scattering is larger in magnitude than the elastic one.  相似文献   

11.
The anomalies at the liquid glass transition discussed recently by Bengtzelius et al. within a mode coupling theory are demonstrated to be due to an isolated eigenvalue of a certain stability matrix to approach unity at the critical point. Within this scenario it is shown how to derive the asymptotic results for the correlations functions analytically up to the determination of two eigenvectors and the evaluation of some wave vector integrals. As a result it is found that the Debye-Waller factor, the Lamb-Mössbauer factor, the localization length for a tagged particle, and the elastic moduli approach their asymptotic limit at the glass instability point with critical exponent one half. The critical dynamics for the coherent and incoherent scattering functions and for the transversal currents is given by a single wave vector independend scaling function. A formula for the critical exponent parameter is obtained and the scaling equation is shown to agree with the one discussed earlier for a schematic model.Dedicated to B. Mühlschlegel on the occasion of his 60th birthday  相似文献   

12.
The X-ray Debye-Waller factors and Debye temperatures of lead nitrate single crystals taken in the powder form have been determined by measuring integrated intensities of selected Bragg reflections at different temperatures. The characteristic specific Debye temperature has been compared with the value obtained from elastic constant data.  相似文献   

13.
Lattice strains in Mg, Zn and Cd powders produced by grinding have been analyzed by X-ray powder diffraction. The lattice strain (ɛ) and Debye-Waller factor (B) are determined from the half-widths and integrated intensities of the Bragg reflections. In all three cases viz. Mg, Zn and Cd, the Debye-Waller factor is found to increase with the lattice strain. From the correlation between the strain and effective Debye-Waller factor, the Debye-Waller factors for zero strain have been estimated for Mg, Zn and Cd. The variation of energy of vacancy formation as a function of lattice strain has been studied.  相似文献   

14.
Diffraction of neutrons in crystals under influence of a sound wave is considered. The probability of scattering of neutrons at the elastic interaction with the crystal is calculated. On the contrary, scattering of neutrons by an acoustical phonon has inelastic character. The possibility to control the Debye-Waller factor is shown.  相似文献   

15.
A parametrization is proposed for the line shapes of near-threshold resonances, which is based on the model of coupled channels and can include an arbitrary number of elastic and inelastic channels and bare poles. The proposed parametrization satisfies the requirements imposed by unitarity and analyticity, and is convenient for the data analysis embracing all available experimental information. The model parameters are physically meaningful, and their values can be found using different theoretical schemes.  相似文献   

16.
Callow, Diller and Norgett, in their investigations on the dynamics of alkali halides, have developed analytic potentials for the short range interactions between the anions and cations. These potentials consisting of Buckingham and van der Waals contributions have been determined from the elastic, dielectric constants and the equilibrium conditions of the lattice and are found to satisfactorily explain the defect properties of many halides. We employ the analytic potentials of Catlow et al. and use anisotropic breathing corrections for the computation on phonon dispersions and Debye-Waller factors of all NaCl structure alkali halides. The results of our study show that good agreement can be obtained with these more physical parameters.  相似文献   

17.
The elastic scattering of light mass, thermal-energy atoms from simple surfaces is investigated. The surface is represented by the model of a single planar square array of hard spheres. The effect of the surface potential well is treated semiclassically by simply shifting the energy of the incident atom ; furthermore a constant imaginary term is added to the energy to account for inelastic scattering and adsorption. As in the multiple scattering formalism of LEED the total scattering matrix of the lattice is expanded in terms of the individual gas atom-surface atom t-matrices. Propagation of the incident atom on the surface is described in terms of a one particle Green's function propagator with complex energy. The terms in the multiple scattering series are summed to all orders, by using standard matrix inversion techniques. The size of the matrix to be inverted limits to ten the total number of phase shifts that are included in the calculation. Thermal effects are included through angle dependent Debye-Waller factors.Model calculations have been performed to study the intensity of the specular and the diffracted beams as a function of the angles of incidence. The importance of surface temperature (introduced by the Debye-Waller factors), the incident energy and the depth of the potential well of the gas-surface interaction are discussed. The main feature of the results is the decrease of the intensity of the specular beam in going from glancing incidence to normal incidence and the presence of structure due to the appearance and disappearance of diffracted beams across the surface. The azimuthal behavior of the specular beam is in agreement with experimental observations.  相似文献   

18.
The Bi(111) surface was studied by elastic scattering of helium atoms at temperatures between 118 and 423 K. The observed diffraction patterns with clear peaks up to third order were used to model the surface corrugation using the eikonal approximation as well as the GR method. Best fit results were obtained with a rather large corrugation height compared to other surfaces with metallic character. The corrugation shows a slight enhancement of the surface electron density in between the positions of the surface atoms. The vibrational dynamics of Bi(111) were investigated by measurements of the Debye-Waller attenuation of the elastic diffraction peaks and a surface Debye temperature of (84 ± 8) K was determined. A decrease of the surface Debye temperature at higher temperatures that was recently observed on Bi nanofilms could not be confirmed in the case of our single-crystal measurements.  相似文献   

19.
We show that the inelastic resonant processes discussed by Cantini and Tatarek affect the line shape of elastic resonances. This effect is not included in the Debye-Waller correction to the repulsive matrix elements, as used by Hutchison and others, and may explain the discrepancy between the line strengths predicted by Hutchison's formulae and those observed by Cantini et al.  相似文献   

20.
Experimental data for the electrical resistivity of K, Na, Cu, Ag and Au at high temperatures and constant volume have been analysed. In particular, corrections to the most simple theoretical model (often referred to as Ziman's model) arising from lattice anharmonicity, Debye-Waller factors, multi-phonon scattering and terms beyond the Born approximation are discussed. The net effect of all these corrections amounts at most to some 10% decrease in the resistivity close to the melting point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号