首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A determination method for lead in waste water and effluent was studied using flame atomic absorption spectrometry after preconcentration of lead by the rapid coprecipitation technique with gallium phosphate. Lead ranging from 0.5 to 50 μg was quantitatively coprecipitated with gallium phosphate from 100–150 mL sample solution (pH ∼5). The presence of gallium phosphate did not affect the atomic absorbance of lead. Since the concentration of gallium in the final sample solution is also measurable by flame atomic absorption spectrometry at 250.0 nm without further dilution, the rapid coprecipitation technique, which does not require complete collection of the precipitate, becomes possible using a known amount of gallium and measuring the concentrations of both lead and gallium in the final sample solution by flame atomic absorption spectrometry. The 32 diverse ions tested gave no significant interferences in the lead determination. The method proposed here is rapid and has good reproducibility. Received: 16 August 1999 / Revised: 6 October 1999 / Accepted: 14 October 1999  相似文献   

2.
A determination method for lead in waste water and effluent was studied using flame atomic absorption spectrometry after preconcentration of lead by the rapid coprecipitation technique with gallium phosphate. Lead ranging from 0.5 to 50 microg was quantitatively coprecipitated with gallium phosphate from 100-150 mL sample solution (pH approximately 5). The presence of gallium phosphate did not affect the atomic absorbance of lead. Since the concentration of gallium in the final sample solution is also measurable by flame atomic absorption spectrometry at 250.0 nm without further dilution, the rapid coprecipitation technique, which does not require complete collection of the precipitate, becomes possible using a known amount of gallium and measuring the concentrations of both lead and gallium in the final sample solution by flame atomic absorption spectrometry. The 32 diverse ions tested gave no significant interferences in the lead determination. The method proposed here is rapid and has good reproducibility.  相似文献   

3.
The present paper proposes a pre-concentration procedure for determination of lead and iron in several samples by flame atomic absorption spectrometry. In it, lead(II) and iron(III) ions are coprecipitated using the violuric acid-copper(II) system as collector. Afterwards, the precipitate is dissolved with 1 M HNO3 solution and the metal ions are determined. The optimization step was performed using factorial design involving the variables: pH, violuric acid mass (VA) and copper concentration (Cu).Using the optimized experimental conditions, the proposed procedure allows the determination these metals with detection limits of 0.18 μg L−1 for iron and 0.16 μg L−1 for lead. The effects of foreign ions on the pre-concentration procedure were also evaluated and the results demonstrated that this method could be applied for determination of iron and lead in several real samples. The proposed method was successfully applied to the analysis of seawater, urine, mineral water, soil and physiological solution samples. The concentrations of lead and iron achieved in these samples agree well with others data reported in the literature.  相似文献   

4.
Cadmium ranging from 1 - 8 ng could be coprecipitated quantitatively with lanthanum phosphate at pH 5 - 6 from up to 200 mL of river water samples spiked with 5 microg of indium as an internal standard. Cadmium and indium coprecipitated were measured by using electrothermal atomic absorption spectrometry. The cadmium content in the original sample solution could be determined by internal standardization with indium. Since complete collection of the precipitate and strict adjustment of the volume of the final solution after coprecipitation are not required in this method, the precipitate could be collected by using decantation and centrifugation, and then dissolved with 1 mL of about 2.4 mol L(-1) nitric acid. The proposed method is simple and rapid, and enrichment close to 200-times can be attained; the detection limit (3sigma, n = 6) was 0.63 ng L(-1) in 200 mL of the sample solution.  相似文献   

5.
A coprecipitation method using a combination of 2-mercaptobenzothiazole (MBT) as a chelating reagent and copper as the coprecipitate carrier is described for the determination of trace lead and cadmium by flame atomic absorption spectrometry. The coprecipitation conditions, such as the effect of pH, the amount of carrier element and reagent, standing time, sample volume and matrix effects were examined in detail. It was found that lead and cadmium are coprecipitated quantitatively (≥95%) with Cu(II)-MBT at pH 9 and that the relative standard deviations (n = 7) were ≤1.6%. When using the enrichment factors of 150-fold for lead and cadmium, the detection limits (3s/b) obtained are 1.08 for lead and 0.04 μg L−1 for cadmium. The method was validated with spiked sea water, stream water, well water, and vegetable samples.  相似文献   

6.
In this study, a fast and simple method is proposed for the determination of Cu in sugar cane spirits employing fast sequential flame atomic absorption spectrometry and the internal standard technique. First, Ag, Bi, Co and Ni were evaluated as internal standards to minimize transport interferences. The results demonstrated that Ag at a concentration of 2 mg L− 1 was effective. Under these conditions, Cu could be determined with a limit of detection of 15 µg L− 1. Then, Cu was determined in 5 sugar cane spirit samples using the proposed method and the results were compared with those obtained by inductively coupled plasma optical emission spectrometry after microwave oven acid digestion. The content of Cu varied from 0.66 to 6.64 mg L− 1. Accuracy and precision of the proposed method were evaluated by comparing the results obtained with both methods. A paired t-test at a 95% confidence level showed that the proposed method enabled the achievement of similar results as those obtained by ICP OES after acid digestion.  相似文献   

7.
Syringe connected-minicolumn (SCM) method for the preconcentration/separation of iron and lead prior to their determination by flame atomic absorption spectrometry (FAAS) was developed. The proposed method is substituted for classical batch and column methods. The method proposed was compared with the column method with respect to easiness, rapidness, simplicity and some analytical performance criteria such as recovery, precision, accuracy and risk of contamination. A minicolumn was filled with Chromosorb-103 as a sorbent and connected with a syringe. The experimental conditions such as pH of sample, concentration and amount of eluent, flow rates of sample and eluent, concentration of 8-hydroxyquinoline (oxine) as a complexing agent were optimized. The sample solution with or without oxine was drawn into the syringe and discharged manually passing through the resin. Analytes were retained at pH ≥5 and eluted with 1 M nitric acid in acetone quantitatively. Analyte elements could be concentrated up to 200-fold. The iron and lead in river-water samples and in certified reference Bovine Liver (NIST 1577b) were quantitatively recovered with relative standard deviation lower than 10%.  相似文献   

8.
浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅   总被引:2,自引:0,他引:2  
采用以双硫腙为络合剂、Triton X-100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定。探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件。在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999。该方法已用于淡水鱼中痕量铅的测定。  相似文献   

9.
A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the adsorption of Cu2+, Ni2+, Co2+ and Pb2+ on 4-propyl-2-thiouracil (PUT) loaded on activated carbon. The metals on the complexes are eluted using 5 mL 3 M HNO3 in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95%. The detection limits for Cu2+, Ni2+, Co2+ and Pb2+ were 1.6, 1.3, 1.2, 2.3 ng ml(-1), respectively. The method has been successfully applied for these metals content evaluation in some real samples including natural water samples.  相似文献   

10.
Some drawbacks of the phosphate modifier such as reagent blank contribution and background absorption in electrothermal atomic absorption spectrometric determination of cadmium and lead are substantially alleviated by application of small amounts of phosphate, approximately 0.2 mumol (25 mug of NH(4)H(2)PO(4) or (NH(4))(2)HPO(4)), on the integrated platform of transversely heated graphite atomizer pre-treated with 2.7 mumol of Zr (250 mug) or W (500 mug) and 0.1 mumol of Ir (20 mug). Pyrolysis temperatures for Cd and Pb are up to 900 and 1100 degrees C for aqueous solutions and within 400-600 degrees C (Cd) and 750-850 degrees C (Pb) for biological fluids (urine, blood) and tissues (hair, liver, muscle) solubilized with tetraethylammonium hydroxide. The thermally stabilized phosphate on Zr-Ir or W-Ir treated platforms serves as a permanent modifier in analyses of environmental waters by multiple hot injections of large sample aliquots. Applications to water and biological certified reference materials are tabulated and show good agreement with certified values. Characteristic masses are 0.7-1.0 pg for Cd and 26-31 pg for Pb.  相似文献   

11.
A continuous flow atomic absorption spectrometric system was used to develop an efficient on-line preconcentration-elution procedure for the determination of iodide traces. Chromium (VI) is introduced into the flow system and is reduced to chromium (III) in acid medium proportionally to the iodide present in the sample. The Cr(III) reduced by iodide is retained on a minicolumn packed with a poly(aminophosphonic acid) chelating resin, while unreduced Cr(VI) is not retained. Reduced Cr(III) is preconcentrated by passing the sample containing iodide through the system during 3 min, and is then eluted with 0.5 mol L–1 hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The detection limit (3σ) obtained is 2.5 μg L–1. Other ions typically present in waters do not interfere. The proposed method allows the determination of iodide in the range 6–220 μg L–1 with a relative standard deviation of 2.7% at a rate of 17 samples h–1. The method has been applied to the determination of iodide in tap and sea waters. Received: 16 September 1999 / Revised: 15 November 1999 / Accepted: 19 November 1999  相似文献   

12.
A continuous flow atomic absorption spectrometric system was used to develop an efficient on-line preconcentration-elution procedure for the determination of iodide traces. Chromium (VI) is introduced into the flow system and is reduced to chromium (III) in acid medium proportionally to the iodide present in the sample. The Cr(III) reduced by iodide is retained on a minicolumn packed with a poly(aminophosphonic acid) chelating resin, while unreduced Cr(VI) is not retained. Reduced Cr(III) is preconcentrated by passing the sample containing iodide through the system during 3 min, and is then eluted with 0.5 mol L(-1) hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The detection limit (3sigma) obtained is 2.5 microg L(-1). Other ions typically present in waters do not interfere. The proposed method allows the determination of iodide in the range 6-220 microg L(-1) with a relative standard deviation of 2.7% at a rate of 17 samples h(-1). The method has been applied to the determination of iodide in tap and sea waters.  相似文献   

13.
The conditions for cloud point extraction of lead(II) from aqueous solutions were investigated and optimized. The procedure is based on the separation of Pb(II) – brillant cresyl blue (BCB) complexes into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1 mol L−1 HNO3 in ethanol and diluted with 1 mol L−1 HNO3 solution before lead was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions was performed. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for lead were 7.5 μg L−1 for water samples and 0.33 μg g−1 for sediment samples. The validity of cloud point extraction was checked by employing certified reference samples of Lake Sediment IAEA-SL-1 and Sewage Sludge BCR-CRM 144R. The procedure was applied to natural waters and sediment samples with satisfactory results (recoveries >95%, relative standard deviations <6.4%).  相似文献   

14.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

15.
The severe interference of a number of metallic ions found in brines, marine sediments and sea water in the determination of lithium is demonstrated. Calcium, iron and sodium significantly depressed the absorption signal on lithium in an air/acetylene flame. Aluminium, magnesium and strontium up to 1500, 1000 and 200 μg/mL, respectively, showed no interference in the determination of lithium under the same conditions. Potassium produced some suppression of the lithium signal at levels in excess of 1500 μg/mL. Experimental data were examined using the factorial design method. Interference was demonstrated in two synthetic samples (models of “brine” and “marine sediments” ) and natural marine sediment. It was possible to eliminate all interferences using a higher temperature (nitrous oxide/acetylene flame). In addition, by using the standard addition method the interference disappeared, which confirmed the interference as a proportional systematic error.  相似文献   

16.
A procedure for the determination of ruthenium in iron meteorites involves its oxidation to RuO4 by sodium periodate in hydrochloric acid and extraction of the tetroxide into chloroform. Various parameters of the method were studied: sample dissolution, optimum amount of oxidant, shaking time, distribution ratio and stability of the complex. The relative standard deviation assessed from replicate analyses of the North Chile iron meteorite was 6.6%. There are no certified standards for iron meteorites, but the value of 20.0 μg g? obtained for this meteorite compares well with a reported abundance of 19.3 μg g?1 obtained by radiometric neutron-activation analysis (RNAA). The analysis of 15 meteorites that had previously been analysed by RNAA gave values averaging 11% below those reported by the latter method, but within the standard deviation of the RNAA data. It is considered that the present method is a more practical alternative to RNAA for the determination of ruthenium in iron meteorites.  相似文献   

17.
The severe interference of a number of metallic ions found in brines, marine sediments and sea water in the determination of lithium is demonstrated. Calcium, iron and sodium significantly depressed the absorption signal on lithium in an air/acetylene flame. Aluminium, magnesium and strontium up to 1500, 1000 and 200 μg/mL, respectively, showed no interference in the determination of lithium under the same conditions. Potassium produced some suppression of the lithium signal at levels in excess of 1500 μg/mL. Experimental data were examined using the factorial design method. Interference was demonstrated in two synthetic samples (models of “brine” and “marine sediments” ) and natural marine sediment. It was possible to eliminate all interferences using a higher temperature (nitrous oxide/acetylene flame). In addition, by using the standard addition method the interference disappeared, which confirmed the interference as a proportional systematic error. Received: 4 December 1998 / Revised: 3 March 1999 / Accepted: 6 March 1999  相似文献   

18.
19.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   

20.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号