首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new tetragonal (P42(1)2) crystalline form of [Cr8F8Piv16] (HPiv = pivalic acid, trimethyl acetic acid) is reported. The ring-shaped molecules, which are aligned in a parallel fashion in the unit cell, form almost perfectly planar, regular octagons. The interaction between the CrIII ions is antiferromagnetic (J = 12 cm(-1)) which results in a S = 0 spin ground state. The low-lying spin excited states were investigated by cantilever torque magnetometry (CTM) and high-frequency EPR (HFEPR). The compound shows hard-axis anisotropy. The axial zero-field splitting (ZFS) parameters of the first two spin excited states (S = 1 and S = 2, respectively) are D1 = 1.59(3) cm(-1) or 1.63 cm(-1) (from CTM and HFEPR, respectively) and D2 = 0.37 cm(-1) (from HFEPR). The dipolar contributions to the ZFS of the S = 1 and S = 2 spin states were calculated with the point dipolar approximation. These contributions proved to be less than the combined single-ion contributions. Angular overlap model calculations that used parameters obtained from the electronic absorption spectrum, showed that the unique axis of the single-ion ZFS is at an angle of 19.3(1) degrees with respect to the ring axis. The excellent agreement between the experimental and the theoretical results show the validity of the used methods for the analysis of the magnetic anisotropy in antiferromagnetic CrIII rings.  相似文献   

2.
A multitechnique approach has allowed the first experimental determination of single-ion anisotropies in a large iron(III)-oxo cluster, namely [NaFe6(OCH3)12(pmdbm)6ClO4 (1) in which Hpmdbm = 1,3-bis(4-methoxyphenyl)-1,3-propanedione. High-frequency EPR (HF-EPR). bulk susceptibility measurements, and high-field cantilever torque magnetometry (HF-CTM) have been applied to iron-doped samples of an isomorphous hexagallium(III) cluster [NaGa6(OCH3)12-(pmdbm)6]ClO4, whose synthesis and X-ray structure are also presented. HF-EPR at 240 GHz and susceptibility data have shown that the iron(III) ions have a hard-axis type anisotropy with DFe = 0.43(1) cm(-1) and EFe = 0.066(3) cm(-1) in the zero-field splitting (ZFS) Hamiltonian H = DFe[S2(z) - S(S + 1)/3] + Fe[S2(x) - S2(y)]. HF-CTM at 0.4 K has then been used to establish the orientation of the ZFS tensors with respect to the unique molecular axis of the cluster, Z. The hard magnetic axes of the iron(III) ions are found to be almost perpendicular to Z, so that the anisotropic components projected onto Z are negative, DFe(ZZ)= -0.164(4) cm(-1). Due to the dominant antiferromagnetic coupling, a negative DFe(ZZ) value determines a hard-axis molecular anisotropy in 1, as experimentally observed. By adding point-dipolar interactions between iron(III) spins, the calculated ZFS parameter of the triplet state, D1 = 4.70(9) cm(-1), is in excellent agreement with that determined by inelastic neutron scattering experiments at 2 K, D1 = 4.57(2) cm(-1). Iron-doped samples of a structurally related compound, the dimer [Ga2(OCH3)2(dbm)4] (Hdbm = dibenzoylmethane), have also been investigated by HF-EPR at 525 GHz. The single-ion anisotropy is of the hard-axis type as well, but the DFe parameter is significantly larger [DFe = 0.770(3) cm(-1). EFe = 0.090(3) cm(-1)]. We conclude that, although the ZFS tensors depend very unpredictably on the coordination environment of the metal ions, single-ion terms can contribute significantly to the magnetic anisotropy of iron(III)-oxo clusters, which are currently investigated as single-molecule magnets.  相似文献   

3.
High-spin molecules with easy-axis magnetic anisotropy show slow magnetic relaxation of spin-flipping along the axis of magnetic anisotropy and are called single-molecule magnets (SMMs). SMMs behave as molecular-size permanent magnets at low temperature and magnetic relaxation occurs by quantum tunneling processes; such molecules are promising candidates for use in quantum devices. We first discuss intramolecular ferromagnetic interactions for preparing high-spin molecules. Second, we determine the magnetic anisotropy for single metal ions with d(n) configurations and discuss how molecular anisotropy arises from single-ion anisotropy of the assembled component metal ions.  相似文献   

4.
The experimental investigation of the molecular magnetic anisotropy in crystals in which the magnetic centers are symmetry related, but do not have a parallel orientation has been approached by using torque magnetometry. A single crystal of the orthorhombic organometallic Cp*ErCOT [Cp*=pentamethylcyclopentadiene anion (C5Me5?); COT=cyclooctatetraenedianion (C8H82?)] single‐molecule magnet, characterized by the presence of two nonparallel families of molecules in the crystal, has been investigated above its blocking temperature. The results confirm an Ising‐type anisotropy with the easy direction pointing along the pseudosymmetry axis of the complex, as previously suggested by out‐of‐equilibrium angular‐resolved magnetometry. The use of torque magnetometry, not requiring the presence of magnetic hysteresis, proves to be even more powerful for these purposes than standard single‐crystal magnetometry. Furthermore, exploiting the sensitivity and versatility of this technique, magnetic anisotropy has been investigated up to 150 K, providing additional information on the crystal‐field splitting of the ground J multiplet of the ErIII ion.  相似文献   

5.
A detailed multifrequency high-field-high-frequency EPR (95-285 GHz) study has been performed on the single-molecule magnet of formula [Fe8O2(OH)12(tacn)6]Br8 x 9H2O, in which tacn = 1,4,7-triazacyclononane. Polycrystalline powder spectra have allowed the estimation of the zero-field splitting parameters up to fourth order terms. The single-crystal spectra have provided the principal directions of the magnetic anisotropy of the cluster. These results have been compared with an evaluation of the intra-cluster dipolar contribution to the magnetic anisotropy; this suggests that single-ion anisotropy is the main contributor to the magnetic anisotropy. The role of the transverse magnetic anisotropy in determining the height of the barrier for the reversal of the magnetization is also discussed.  相似文献   

6.
By employing hydrothermal method, six transition metal sulfates containing hydrazine (N(2)H(4)) have been obtained: [M(SO(4))(2)(N(2)H(5))(2)](n) (M = Mn(1), Co(2), Ni(3)) and [M(N(2)H(4))SO(4)](n) (M = Mn(4), Co(5), Ni(6)). Their crystal structures and magnetic properties have been investigated experimentally and theoretically. Compounds 1-3 consist of one-dimensional sulfate bridged homometallic chains with protonated hydrazine molecule as terminal ligand, and compounds 4-6 are hydrazing-sulfate mixed bridged homometallic three-dimensional frameworks. Compounds 1-6 exhibit antiferromagnetic coupling between M(2+) ions, but their magnetic properties differ at low temperatures because of the different single-ion anisotropy and crystal structures. The magnetostructural correlations and the magnetic coupling mechanism are analyzed by density functional theory calculations (DFT).  相似文献   

7.
We report a series of oligonuclear carboxylate-rich high-spin ironII complexes with three different [FeIIn(mu-O2Cbiph)2n(L)m] (n = 2-4; m = 2 or 4) structural motifs, where -O2Cbiph is 2-biphenylcarboxylate and L is an exogenous ligand bound to terminal iron atoms. Solid compounds were isolated and their structural, spectroscopic, and magnetic properties thoroughly investigated. The discrete tetranuclear complexes [Fe4(mu-O2Cbiph)8(L)2] crystallize in a planar tetraironII motif in which two diiron paddlewheel units are linked in an unprecedented manner involving a mu3-1,1,3-bridging mode. X-ray crystallography reveals average Fe-Oanti bond lengths of 2.081[2] A at the dimer-dimer interface. Terminal axial positions are capped by ligands L, where L is tetrahydrofuran (THF) (1), indazole (2), pyrazole (3), 3,5-dimethylpyrazole (4), or acetamide (5). Reaction of 1 with an excess of acetonitrile affords the linear compound [Fe3(mu-O2Cbiph)6(MeCN)4] (6). The acetonitrile ligands in 6 can be replaced by THF or dimethoxyethane at elevated temperatures with retention of the structure to afford 7 and 8, respectively. Reaction of 1 or 6 with pyridine or 1-methylimidazole results in the isolation of paddlewheel dimers 9 and 10, respectively, with [Fe2(mu-O2Cbiph)4(L)2] composition. M?ssbauer spectroscopy confirms the presence of high-spin ferrous ions and indicates that the two iron sites of the dimer are geometrically indistinguishable. For the tri- and tetrairon compounds, two quadrupole doublets are observed, suggesting that the iron centers do not have identical geometries. Plots of magnetic susceptibility versus temperature reveal intramolecular antiferromagnetic exchange coupling for all complexes under study. The magnetic data were fit to a theoretical model incorporating exchange coupling, single-ion zero-field splitting, and g-tensor anisotropy. The resulting magnetic parameters reveal in most cases weak antiferromagnetic exchange coupling (J typically <3 cm(-1)) and dominant zero-field-splitting parameters.  相似文献   

8.
9.
The optical and magnetic properties of the multi-metal rings [NH(2)R(2)][Cr(7)MF(8)(O(2)CCMe(3))(16)], where M = Cd(II), Mn(II) or Ni(II), have been studied using variable-field and variable-temperature magnetic circular dichroism (MCD) in the UV-visible spectra. Spectra of samples were recorded in a frozen organic matrix or cast in a polymethacrylate (PMMA) polymer film between 1.7 and 75 K. The spectra are characteristic of the Cr(III) ion (d(3)) in a rhombic field when M = Cd(II). In the case that M = Ni(II) additional optical transitions arise from the d(8) ion whereas for M = Mn(II) no additional transitions are observed. The influence of magnetic exchange is apparent from a change in the sign of the MCD signal between complexes in which the hetero-atom has a local spin moment greater, or less, than that of Cr(III), S = 3/2, namely, Mn(II), S = 5/2, and Ni(II), S = 1. The exchange coupling generates a manifold of thermally accessible electronic states that give rise to variations in MCD intensity as well as additional spectral features as the temperature is raised. Equations have been derived to relate the splittings observed in the optical spectrum to the single-ion ground state zero-field splittings of chromium(III). There is reasonable agreement between the sign and magnitude of the contribution to the cluster anisotropy from that of the single ion with values estimated from other techniques.  相似文献   

10.
A two-dimensional iron(II) carboxylate coordination polymer, [Fe(pyoa)2]infinity, where pyoa is 2-(pyridin-3-yloxy)acetate, has been prepared by hydrothermal synthesis. Its crystal structure reveals a single iron(II) site with an elongated octahedral coordination environment containing four equatorial carboxylate oxygens and two axial pyridyl nitrogens; the iron(II) sites are linked by syn-anti micro-carboxylates to form chains along the b axis that have an Fe...Fe separation of 4.910 A. The shortest interchain and interlayer Fe...Fe distances are 6.453 and 11.125 A, respectively. The 4.2-295 K M?ssbauer spectra of [Fe(pyoa) 2] infinity consist of a single paramagnetic high-spin iron(II) quadrupole doublet. The axial Fe-N bond direction defines the Jahn-Teller axis at an iron(II) site and, consequently, the orientation of the single-ion magnetic anisotropy. Thus, along the b axis in a given chain, the spins are collinear and parallel to the Jahn-Teller axis. The Jahn-Teller axes of adjacent intralayer chains have different orientations with an angle of 79.2 degrees between the axes in adjacent chains in a bc layer. [Fe(pyoa)2]infinity exhibits field-induced metamagnetic behavior such that, in an applied field smaller than the critical field, the iron(II) spin-canted moments experience intrachain ferromagnetic interactions and weak interchain antiferromagnetic interactions; the spin canting yields weak ferromagnetism. In an applied field larger than the critical field, the weak antiferromagnetic interchain interactions are overwhelmed to yield superparamagnetic-like slow-magnetic relaxation with an energy barrier of 23(3) K. Single-crystal magnetic studies reveal a quasi-uniaxial magnetic anisotropy with the a axis as the easy-magnetic axis and the b axis as the hard-magnetic axis; the susceptibility measured along the easy a axis may be fit with the Glauber model to yield an effective intrachain exchange coupling constant of 2.06(8) K. A dynamic analysis of the susceptibility yields a 6.3(1) K energy barrier for intrachain domain wall creation. The observed field-assisted superparamagnet-like behavior is consistent with the dynamics of a single-chain magnet. Thus, [Fe(pyoa)2]infinity is best considered as a "metamagnetic-like" single-chain magnet.  相似文献   

11.
The magnetic anisotropy of the supramolecular [2 x 2] grid [Co(II)4L4]8+, with a bis(bipyridyl)-pyrimidine-based ligand L, was investigated by single-crystal magnetization measurements at low temperatures. The magnetization curves exhibit metamagnetic-like behavior and are explained by the weak-exchange limit of a minimal spin Hamiltonian including Heisenberg exchange, easy-axis ligand fields, and the Zeeman term. It is also shown that the magnetic coupling strength can be varied by the substituent R1 in the two-position on the central pyrimidine group of the ligand L.  相似文献   

12.
Wang XY  Wang ZM  Gao S 《Inorganic chemistry》2008,47(13):5720-5726
The magnetic properties of Co(N 3) 2(4acpy) 2 have been thoroughly reexamined on both powder and well-oriented single crystal samples. This azido-bridged cobalt compound of (4, 4) layer shows a weak-ferromagnetic state below T C = 11.2 K. The magnetic axes were determined to be along the crystallographic a*, b, and c axes for the monoclinic space group P2 1/c. The easy axis lies along the b-axis, the canting is along the a*-axis, and the hard axis is along the c-axis. Strong anisotropy due to the oriented moments in the ordered state and/or the single-ion anisotropy of Co (2+) exists in the whole temperature range from 2 to 300 K. Below T C, very big spontaneous magnetization was observed and was attributed to the very big canting angle (15 degrees at 2 K). A possible spin configuration was then proposed to explain the experimental results. The origin of the big spin canting was discussed, and a weak-ferromagnetic approach toward molecular magnets with big spontaneous magnetization was proposed accordingly.  相似文献   

13.
Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.  相似文献   

14.
以N-乙基-3-吲哚三氟甲基β-二酮(EIFD)为主配体,分别以乙二醇单甲醚(EM)、乙二醇二甲醚(EDM)、二缩三乙二醇(TEG)为辅助配体,与DyCl3·6H2O反应合成了一系列Dy(Ⅲ)配合物[Dy(EIFD)3(EM)]·CH2Cl2(1)、[Dy(EIFD)3(EDM)]·CH2Cl2(2)和[Dy(EIFD)3(TEG)](3)。X射线单晶衍射分析表明,3个配合物都是八配位的单核结构,配位构型分别为双帽三棱柱、正十二面体和双帽三棱柱,分别具有C2v、D2d和C2v对称性。磁学性质显示了配合物1~3具有慢弛豫现象,能垒分别为95.1 K (1)、40.5 K (2)、53.8和13.4 K (3),且配合物1和3有明显的蝴蝶状磁滞回线。进一步讨论了配合物中Dy-O键长和含氧辅助配体的电子效应对配合物有效翻转能垒的影响。  相似文献   

15.
The preparation, structure and magnetic properties of three new wheel-shaped dodecanuclear manganese complexes, [Mn12(Adea)8(CH3COO)14] x 7 CH3CN (1 x 7CH3CN), [Mn12(Edea)8(CH3CH2COO)14] (2) and [Mn12(Edea)8(CH3COO)2(CH3CH2COO)12] (3), are reported, where Adea(2-) and Edea(2-) are dianions of the N-allyl diethanolamine and the N-ethyl diethanolamine ligands, respectively. Each complex has six Mn(II) and six Mn(III) ions alternating in a wheel-shaped topology, with eight n-substituted diethanolamine dianions. All variable-temperature direct current (DC) magnetic susceptibility data were collected in 1, 0.1, or 0.01 T fields and in the 1.8-300 K temperature range. Heat capacity data, collected in applied fields of 0-9 T and in the 1.8-100 K temperature range, indicate the absence of a phase-transition due to long-range magnetic ordering for 1 and 3. Variable-temperature, variable-field DC magnetic susceptibility data were obtained in the 1.8-10 K and 0.1-5 T ranges. All complexes show out-of-phase signals in the AC susceptibility measurements, collected in a 50-997 Hz frequency range and in a 1.8-4.6 K temperature range. Extrapolation to 0 K of the in-phase AC susceptibility data collected at 50 Hz indicates an S = 7 ground state for 1, 2, and 3. Magnetization hysteresis data were collected on a single crystal of 1 in the 0.27-0.9 K range and on single crystals of 2 and 3 in the 0.1-0.9 K temperature range. Discrete steps in the magnetization curves associated with resonant quantum tunneling of magnetization (QTM) confirm these complexes to be single-molecule magnets. The appearance of extra QTM resonances on the magnetic hysteresis of 1 is a result of a weak coupling between two Mn ions at opposite ends of the wheel, dividing the molecule into two ferromagnetic exchange-coupled S = 7/2 halves. The absence of these features on 2 and 3, which behave as rigid spin S = 7 units, is a consequence of different interatomic distances.  相似文献   

16.
Tetrairon(III) Single-Molecule Magnets (SMMs) with a propeller-like structure exhibit tuneable magnetic anisotropy barriers in both height and shape. The clusters [Fe4(L1)2(dpm)6] (1), [Fe4(L2)2(dpm)6] (2), [Fe4(L3)2(dpm)6].Et2O (3.Et2O), and [Fe4(OEt)3(L4)(dpm)6] (4) have been prepared by reaction of [Fe4(OMe)6(dpm)6] (5) with tripodal ligands R-C(CH2OH)3 (H3L1, R = Me; H3L2, R = CH2Br; H3L3, R = Ph; H3L4, R = tBu; Hdpm = dipivaloylmethane). The iron(III) ions exhibit a centered-triangular topology and are linked by six alkoxo bridges, which propagate antiferromagnetic interactions resulting in an S = 5 ground spin state. Single crystals of 4 reproducibly contain at least two geometric isomers. From high-frequency EPR studies, the axial zero-field splitting parameter (D) is invariably negative, as found in 5 (D = -0.21 cm(-1)) and amounts to -0.445 cm(-1) in 1, -0.432 cm(-1) in 2, -0.42 cm(-1) in 3.Et2O, and -0.27 cm(-1) in 4 (dominant isomer). The anisotropy barrier Ueff determined by AC magnetic susceptibility measurements is Ueff/kB = 17.0 K in 1, 16.6 K in 2, 15.6 K in 3.Et2O, 5.95 K in 4, and 3.5 K in 5. Both |D| and U(eff) are found to increase with increasing helical pitch of the Fe(O2Fe)3 core. The fourth-order longitudinal anisotropy parameter B4(0), which affects the shape of the anisotropy barrier, concomitantly changes from positive in 1 ("compressed parabola") to negative in 5 ("stretched parabola"). With the aid of spin Hamiltonian calculations the observed trends have been attributed to fine modulation of single-ion anisotropies induced by a change of helical pitch.  相似文献   

17.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

18.
The spin—lattice relaxation time of the 31P nucleus was measured for 11 phosphorylated molecules (phosphine oxides, trialkylphosphates and phosphoramides) dissolved in nitromethane at three different frequencies and as a function of the temperature for three compounds. The different contributions to the relaxation rate due to dipolar, chemical shift anisotropy and spin—rotation interactions were determined and the reorientational correlation times of the molecules were deduced when the anisotropy of the chemical shift tensor of the 31P nucleus could be (re)determined. The quadrupolar coupling constant of the 17O nucleus was also determined from the linewidth of the nuclear magnetic resonance signals, for phosphine oxides and triphenylphosphate, giving some information on the electronic distribution into the phosphoryl bond. The spin—rotation coupling constants for trimethylphosphine oxide and triphenylphosphine oxide were deduced and the chemical shift anisotropy Δσ of trialkylphosphates estimated.  相似文献   

19.
The J = 1-0 transitions of (12)CH(+), (13)CH(+), and (12)CD(+) in the ground X(1)Σ(+) state have been unambiguously identified by using an extended negative glow discharge as an ion source. Unexpectedly large Zeeman splittings have been observed, and the (13)CH(+) line exhibits nuclear spin-rotation hyperfine splitting in addition to the Zeeman effect. The nuclear spin-rotation coupling constant was determined to be 1.087(50) MHz for the (13)C species. The rotational g-factor is found to be -7.65(29), in terms of the nuclear magneton for the J = 1 and v = 0 state, more than an order of magnitude larger than values for typical diamagnetic closed shell molecules. These larger than usual magnetic interactions for a (1)Σ molecule are caused by the large rotational energy and relatively small excitation energy of the excited A(1)Π state. The effective g-factor and the spin-rotation coupling constant obtained by ab initio calculations agree very well with the experimentally determined values.  相似文献   

20.
Magnetic properties of bimetallic thiocyanate-bridged chains are numerically analyzed on the basis of the one-dimensional quantum anisotropic Heisenberg model without the mean-field corrections. The single-ion and g factor anisotropy of the metal ions (Co(II), Mn(II), Ni(II)) are taken into account. The thermodynamic properties are calculated using the DMRG technique, which is reliable in the entire temperature region, adapted to the molecular-based chains. The high accuracy results of our simulations are successfully fitted to the corresponding experimental susceptibility and magnetization data measured for a powder sample. Our analysis permitted determination of the microscopic parameters (the strength of magnetic couplings between the copper and metal ions and the single-ion anisotropy terms) as well as the corresponding g factors which are consistent with the values known for other compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号