首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area. This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices. This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices. The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices; main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure; the evolution and development of asymmetric vortices under the perturbation on the model nose; forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail. However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks. The project supported by the National Natural Science Foundation of China (10172017), Aeronautical Science Foundation of China (02A51048) and Foundation of National Key Laboratory of Aerodynamic Design and Research (51462020504HK0101)  相似文献   

2.
高机动飞行器非指令运动及其控制的研究进展   总被引:1,自引:0,他引:1  
高机动飞行器往往都是通过大攻角飞行来实现高机动科目的, 在发展高机动飞行器的过程中, 其非指令运动是伴随着大攻角飞行而常常出现的运动形态. 为此, 应在飞行器设计的早期阶段, 充分研究所设计布局的大攻角流动性态及其相应的非指令运动的形态;揭示这类运动形态的主控流动;在此基础上形成和发展流动控制新技术, 以达到抑制非指令运动的目的. 由于大攻角前体非对称涡往往与非指令运动密切相关, 为此本文首先指出前体非对称涡流动对头部微扰动十分敏感, 以致长期以来让人们误认为这类流动具有不确定性. 研究表明, 通过设置人工微扰动可使前体非对称涡流动具有可重复性, 并揭示该流动随扰动周向角变化的响应、演化规律. 通过利用大、小后掠翼两类翼身组合体的典型布局形式, 研究它们所呈现的摇滚运动形态, 揭示其摇滚运动的不同主控流动机理, 在此基础上分别发展了抑制小、大后掠翼身组合体摇滚运动的流动控制技术: 快速旋转头部扰动和适当设置扰动位使翼、身的两对非对称涡处于反相. 在抑制非指令运动的研究中, 深入理解和揭示头部微扰动对非对称涡流动的响应、演化机理是至关重要的, 应予以特别关注.  相似文献   

3.
采用测压方法研究了矢量喷流对细长旋成体大迎角非对称流动的影响特性.实验结果表明:矢量喷流对细长旋成体大迎角非对称侧向力有明显的抑制作用,该抑制作用是通过喷流诱导作用,改变其空间绕流涡系结构的分布来实现的,但是矢量喷流的存在并不能改变大迎角机身空间绕流涡系的本质结构;随着迎角的增大,矢量喷流对细长旋成体大迎角非对称流动的影响区域不断前移,甚至影响到头部;随着喷流落压比的增加,矢量喷流对细长旋成体大迎角非对称侧向力的抑制作用加强,但当喷流落压比达到临界落压比后(即喷管出口处达到设计马赫数时),喷流影响作用将不会随喷流落压比的增加而改变.  相似文献   

4.
李锋  周伟江  王强  汪翼云 《力学学报》1995,27(Z1):114-119
用数值模拟方法研究了超声速情况下,无限长细长体背风面的涡结构。数值模拟的出发方程和计算格式分别为全N-S方程和二阶空间精度的TVD格式。数值结果给出了圆锥、半球柱体和椭圆锥在不同攻角下的流场结果。结果表明圆锥在攻角α=15°,20°和25°时背风面呈现明显的稳定非对称横向分离,而半球柱体和椭圆锥在32.5°和25°时背风面均未出现非对称的横向分离结构。  相似文献   

5.
The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not understood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vortex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer transition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important ques- tions that deserve answers are proposed in the concluding remarks.  相似文献   

6.
Side forces on slender bodies of revolution at medium to high angles of attack (AOA > 30°) has been known from a large number of investigations. Asymmetric vortex pairs over a slender body are believed to be the principle cause of the side forces. Under some flight conditions, this side force may be as large as the normal force acting on the slender body. In this paper, experimental results are presented for side force control on a cone-cylinder slender body by using microfabricated balloon actuators. The micro balloon actuators are made of polydimethylsiloxane (PDMS) elastomer by using micro molding techniques. They can be packaged on curve surfaces of a cone-cylinder slender body. As actuator is actuated, the micro balloon actuator inflates about 1.2 mm vertically, which is about 2.4% of the cylinder diameter D (=50 mm) of the cone-cylinder slender body. Micro balloon actuators are actuated at different roll angles of a cone-cylinder slender body. Aerodynamic force measurement results indicate the effects of micro balloon actuators vary at different actuation locations on the cone-cylinder slender body. The side forces can be significantly reduced if the actuators are actuated in the weak vortex side (the side corresponding to the asymmetric vortex which is far from the surface) and actuation angles are located at about 50–60° (the actuation angle here is measured from stagnation line of the incidence plane toward weak vortex side direction). Significant changes are noticed from the surface pressure, as well as leeside vortex flow field, measurement. Micro balloon actuators change nose shapes of the slender body which decide adverse-pressure-gradient values and directly influence the origin of the separation lines and characteristics of the separated vortices over the leeside surface.  相似文献   

7.
刘跃  管小荣  徐诚  常玲玲 《力学季刊》2016,37(2):318-326
分别运用扇形(Fan)、阶梯形(Ladder)、交界面形(Interface)网格对细长体小攻角对称、大攻角对称、大攻角非对称绕流流场进行了数值研究.通过涡核位置、涡簇显示、物面压力分布、轴向力分布等的计算结果比较了三种网格的计算精度.数值实验表明:细长体分离涡流场对边界层网格非常敏感,应严格控制边界层网格的正交性;随着攻角增大,流场对网格特性的敏感性有增高的趋势;阶梯形网格可能会对流场带入非物理性扰动,交界面网格对流场捕捉有不连续现象;将三种网格得到的物面压力、侧向力、流动分离位置与实验值进行对比,发现扇形网格误差最小、交界面网格误差最大;大攻角非对称流动时,扇形网格计算的侧向力有整体向细长体头部压缩的趋势,涡脱落位置靠前,第二个及第三个极值更大,说明非对称现象有向尾部发展的趋势.  相似文献   

8.
Topological structure and stability of a slender cross flow is discussed by the stability theory of dynamic system. The inner boundary of flow field was limiting streamline and it was proved that the topological structure connected saddles by limiting streamline is stable. It is proved that the development of slender vortices leads to the change of topological structure about cross flow. And it is the change from stable and symmetrical vortices flow pattern to unstable and symmetrical vortices flow pattern, and then to stable and asymmetrical vortices flow pattern due to little disturbance which leads to the development of asymmetrical slender vortices. The influence of disturbance to flowfield structure was discussed by unfolding theory too.  相似文献   

9.
细长体大迎角非对称涡流的数值研究   总被引:8,自引:0,他引:8  
通过数值方法对大迎角细长体低速湍流流场的模拟,探讨头部顶端极小扰动对细长体非对称绕流形成与发展的影响.结果表明在细长体顶端附近施加极小扰动可以模拟出实验观测到的非对称流场,非对称的涡系结构沿轴向是逐步发展的,截面侧向力沿轴向的分布呈现正弦型曲线的变化特征,扰动能量经过指数增长后达到饱和,有效扰动的规模影响涡流非对称性的大小及分布,单侧扰动产生的流场非对称性随扰动周向位置的变化呈现单周期性规律.小扰动诱发非对称的数值算例表明非对称绕流的形成是源于流场的空间不稳定性机制.  相似文献   

10.
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.  相似文献   

11.
Using hybrid perturbatin- Galerkin technique, a circular cross-section tube model with sinusoidal wall is studied. This technique can remove the limitation of small parametersfor perturbation and the difficulty of selecting good coordinate functions about Galerkintechnique. The effects caused by the boundary conditions and the Reynolds number on theflow were discussed. The position of the separate and reattachment points was obtained. The tendency of the variation about the shear stress on the wall and friction factor along the axisdirection were also analyzed, The results at a small parameter have good agreements withthe perturbation ones.  相似文献   

12.
In this study, the characteristics of oscillating pressure-driven flow in a microdiffuser are examined by μPIV (micro Particle Image Velocimetry) diagnostics. Utilizing a cam-follower system, a dynamic pressure generator is built in-house to provide a time-varying sinusoidal pressure source. Three parameters are examined experimentally: the excitation frequency, the cam size, and the half-angle of the microdiffuser. Driven by oscillating pressure, we find that there exists an optimal half-angle such that maximum net flow is attained in the expansion direction. Contrarily to the prediction of hydraulics theory which only considers steady flow, flow in the microdiffuser of the optimal half-angle does not necessarily remain attached. Rather, maximum net flow can also occur in microdiffusers where vortices retain a slender shape. When vortex bubbles are slender, the μPIV results reveal that the core flow accelerates to a higher forward velocity during the first half of the cycle and flow rectification is actually enhanced. Due to the three-dimensional flow structure, fluid is drawn out of the vortices near the reattachment point to join the core flow and consequently magnifies the forward flow. As the half-angle increases, vortices become rounder and the core flow is drastically narrowed to reduce flow rectification.  相似文献   

13.
A critical pattern of crossflow around a slender   总被引:1,自引:0,他引:1  
IntroductionModernhigh_performancefightersoftenrequiretobeoperatedunderafairlylargeangleofattacksoastoachieveexcellentmaneuverabilityandagility .Atsuchlargeangleofattack ,asymmetricallee_sidevortexflowwillformatthefrontpartofthefuselage .Sothatsuchagreats…  相似文献   

14.
PIV investigation of flow behind surface mounted permeable ribs   总被引:2,自引:0,他引:2  
The flow behind surface mounted permeable rib geometries, i.e. solid, slit, split-slit and inclined split-slit ribs have been studied using flow visualization and PIV (2-C and 3-C) technique in streamwise and cross-stream measurement planes. The objective behind this study is to understand the flow structures responsible for heat transfer/mixing enhancement with simultaneous pressure penalty reduction by permeable rib geometries. The Reynolds number based on the rib height has been set equal to 5,538 and the open area ratio of permeable ribs is equal to 20%. The permeable rib geometries have shorter reattachment length in comparison to the solid rib. The maximum 41% reduction in reattachment length is observed for the inclined split-slit rib. The splitter mounted inside the slit leads to two corner vortices behind it. The corner vortices drag the flow from the primary recirculation bubble region towards the rib resulting in drop of the reattachment length. Two horseshoe vortices are present in the flow through the slit at both sides of the splitter due to the upstream flow separation. The slit inclination moves these horseshoe vortices closer to the bottom wall. A film like flow through the slit is present near the downstream corner of the inclined split-slit rib. The spanwise velocity gradient due to the splitter leads to vorticity and turbulence enhancement by vortex stretching. The inclination of the slit and the use of a splitter inside the slit are two important design parameters responsible in generation of near-wall longitudinal vortices. The flow field behind permeable ribs is dominated by vortical structures with definable critical flow patterns, i.e. node, saddle and foci. These predominant swirling flow motions contribute to the mixing enhancement behind permeable rib geometries. On leave from Mechanical Engineering Department, IIT Kanpur, U.P. 208016, India  相似文献   

15.
IntroductionThemodernanalysisandmethodsfornonlineardynamicshavegreatlypromotedthedevelopmentinnonlinearscience.TheseincludeL_Sreduce[1],singularitytheory[2 ],perturbationtechnique[3 ],Melnikovfunction[4 ],C_Lmethod[5 ]andcentermanifold[6],etc .However,thecouplingbe…  相似文献   

16.
Construction of third-order WNND scheme and its application in complex flow   总被引:2,自引:0,他引:2  
IntroductionWiththedevelopmentofaeronauticsandaerospacetechnology ,moreandmorerequirementsarearisingforCFD (computationalfluiddynamics) .Oneoftheproblemsistodevelophigherorderaccuracyschemes.Forexample ,whenapplyingLES (largeeddysimulation)orDNS(directnumericalsimulation)methodtosimulatingturbulenceproblem ,theschemesneedthirdorderaccuracyormoreinspace .Anotherquestionistheinfluenceofgrid’sscaletotopologicalstructureofflowfield .Inordertosimulatecomplicatedflowswithseparationorturbulencec…  相似文献   

17.
柏楠  邓学蓥  王延奎 《力学学报》2007,39(2):261-266
通过在细长旋成体模型机身的不同位置设置出烟孔,使用新型发烟装置对模型注入雾化油 滴,采用激光片光法在常规风洞中高风速(60m/s)条件下得到清晰、完整而稳定的截面涡 结构图像. 并通过同状态标定法和等比例网格法发展了简易涡位定量测量技术,为前体非对 称涡Re数效应的研究提供了重要的技术平台.  相似文献   

18.
Aerodynamic interference between high-speed slender bodies can detrimentally affect the force and moment characteristics. This is investigated through a wind tunnel study using pressure sensitive paint and force measurements on a receiver body placed adjacent to a generator body. The aim of this paper is to understand both the force and moment changes as well as the underlying aerodynamics of the interference loads which are induced by the disturbance flowfield. The impact of receiver incidence and the strength of the disturbance field are also assessed. The observed interference loads primarily depend on a complex balance of static pressure footprints and tend to be bespoke to each configuration. As a result, overall trends are difficult to extract, but in general the magnitude of the interference loads increases when the receiver is at incidence and also when the strength of the imposed disturbance flowfield increases.  相似文献   

19.
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shockreconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4° attack angle.  相似文献   

20.
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces. The project supported by the National Natural Science Foundation of China (Grant No.19672070)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号