首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study a four-level double-Λ atomic ensemble interacting with two time-dependent signal fields and two stationary control fields. Though, in each Λ channel, a pair of signal and control fields couple resonantly with the two lower levels of atoms, the occurrences of electromagnetically induced transparency (EIT) is affected by the coherence of the four fields. In the discussion of atomic susceptibilities, we show that the quantum coherence between the two lower levels can be either formed or released according to the phase matching of the four fields. We analyze the propagation equation of the two signal fields, and find two characteristic solutions: the stationary transmission wave and the transient decay wave. The former corresponds to a correlated EIT effect in which two signal pulses are shape-matched. The latter is an opposite effect to the correlated EIT in which two pulses quench simultaneously, thus named as the correlated two-signal absorption (CTSA). We propose the CTSA condition in correspondence with the EIT condition. The numerical simulation shows that the double-Λ configuration is capable of manipulating synchronous optical signals and thus provides multiplicity and versatility in quantum information process.  相似文献   

2.
We perform electromagnetically induced transparency (EIT) experiments in cesium vapor with pulses on the single-photon level for the first time. This was made possible by an extremely large total suppression of the EIT coupling beam by 118 dB mainly due to a newly developed triple-pass planar Fabry-Pérot etalon filter. Slowing and shaping of single-photon light pulses as well as the generation of pulses suitable for quantum key distribution applications and testing of approaches for single photon storage is demonstrated. Our results extend single-photon EIT to the particularly interesting wavelength of the Cs D1 line.  相似文献   

3.
Schmidt H  Imamoglu A 《Optics letters》1998,23(13):1007-1009
Recently a cross-phase modulation scheme that yields giant Kerr nonlinearities by use of an electromagnetically induced transparency (EIT) was proposed [Schmidt and Imamoglu, Opt. Lett. 21, 1936 (1996)]. We analyze the high-speed properties of this scheme for short-pulse propagation. We discuss the relevant losses in this system and show that for short pulses one-photon losses are dominant. We demonstrate that over the entire bandwidth the attainable phase shift in an EIT scheme with a quasi-cw coupling field is orders of magnitude higher than in a conventional three-level scheme or in EIT schemes, in which matched pulses are used to create the transparency.  相似文献   

4.
We show that nonadiabatic, resonant amplitude- and phase-modulated pulses can be frequency converted with greater efficiency than adiabatic resonant pulses in a double Λ system, interacting with two strong cw beams on one side of the system, and a weak pulsed probe on the other. Indeed, in this double EIT (electromagnetically induced transparency) configuration, conversion efficiencies close to unity, similar to those achieved using highly detuned pulses, can be obtained using highly nonadiabatic resonant pulses. The distance at which the maximum conversion occurs is shorter than in a coherently-prepared Λ system. This counteracts the increased absorption that occurs in the double EIT configuration, so that both produce similar conversion efficiencies. The absorption experienced by matched nonadiabatic pulses in the double EIT system, at all propagation distances, can be overcome by superimposing the nonadiabatic pulses as amplitude modulations on carrier fields. Thus we demonstrate the formation of adiabatons in the double EIT system, and of diabatons in both the coherently-prepared Λ system and the double EIT system. Both the diabatons and adiabatons satisfy pulse-matching conditions. In addition, the asymptotic amplitude of the complementary amplitude modulations is proportional to the ratio of the pump to probe carrier Rabi frequencies, and is the same in each of the configurations.  相似文献   

5.
Reversible storage of multiple light pulses in the EIT atomic medium   总被引:1,自引:0,他引:1  
In this paper, we first present a full numerical simulation for the trapping and retrieval procedure of eight continuing "1" Guassian pulses (i.e., "11111111") in the electromagnetically induced transparency (BIT) medium. This simulation shows that an BIT medium has the ability to store multiple light pulses in a shape-preserving way. And we also, for the first time, give the formula evaluating the maximum number of pulses that can be stored by an EIT medium at one time. This work reveals a new possible way to the reversible storage of the photonic information.  相似文献   

6.
We report on the first experimental demonstration of low-light-level cross-phase modulation (XPM) with double slow light pulses based on the double electromagnetically induced transparency (EIT) in cold cesium atoms. The double EIT is implemented with two control fields and two weak fields that drive populations prepared in the two doubly spin-polarized states. Group velocity matching can be obtained by tuning the intensity of either of the control fields. The XPM is based on the asymmetric M-type five-level system formed by the two sets of EIT. Enhancement in the XPM by group velocity matching is observed. Our work advances studies of low-light-level nonlinear optics based on double slow light pulses.  相似文献   

7.
This paper reviews recent efforts to realize a high‐efficiency memory for optical pulses using slow and stored light based on electromagnetically induced transparency (EIT) in ensembles of warm atoms in vapor cells. After a brief summary of basic continuous‐wave and dynamic EIT properties, studies using weak classical signal pulses in optically dense coherent media are discussed, including optimization strategies for stored light efficiency and pulse‐shape control, and modification of EIT and slow/stored light spectral properties due to atomic motion. Quantum memory demonstrations using both single photons and pulses of squeezed light are then reviewed. Finally a brief comparison with other approaches is presented.  相似文献   

8.
闫研  李淑静  田龙  王海 《物理学报》2016,65(1):14205-014205
利用电磁感应透明(EIT)效应在87Rb热原子气室中进行了慢光和光存储的实验研究,在单光子红失谐650 MHz处测量了双光子失谐对光脉冲延迟和光存储的影响.结果表明:在双光子失谐0—0.5 MHz范围内存在显著的光脉冲延迟和光存储恢复信号,其慢光波形与理论计算结果基本相符;而恢复光脉冲信号随着双光子失谐的变化出现形变,这是由于多个EIT子系统之间的干涉引起的.这一研究结果为连续变量光场在热原子系综中的存储提供了实验参考.  相似文献   

9.
We propose a scheme that excites rogue waves via electromagnetically induced transparency(EIT), which can also excite breathers and solitons. The system is a resonant Λ-type atomic ensemble. Under EIT conditions, the envelope equation of the probe field can be reduced to several different models, such as the saturable nonlinear Schr?dinger equation(SNLSE), and SNLSE with the trapping potential provided by a far-detuned laser field or a magnetic field. In this scheme, rogue waves can be generated by different initial pulses, such as the Gaussian wave with(or without) the uniform background. The scheme can be used to obtain rogue waves,breathers and solitons. We show the existence regions of rogue waves, breathers, and solitons as the function of the amplitude and width of the initial pulse. The novelty of our paper is that, we not only show rogue waves in the integrable system numerically, but also present the method to generate and control rogue waves in the non-integrable system.  相似文献   

10.
We propose a method of all-optical investigation of radiofrequency (RF) radiation based on the coherent effect of electromagnetically induced transparency (EIT). It is shown that if the atomic coherence is perturbed by an RF field, the shape of probe pulse propagating in a three-level ??-type atomic medium under EIT conditions is modified correspondingly to the temporal structure of the RF pulse. The effect is sensitive to the parameters of the pulse which enables measuring the intensity and the spectrum of the RF pulse. The method can be used for storage and lossless transfer of RF information over long distances using optical pulses.  相似文献   

11.
In this work, we experimentally study the effect of externally applied magnetic field on a ladder type EIT in a vapour cell consisting of 87Rb atoms. The introduction of magnetic field causes the Zeeman splitting of the hyperfine levels of 87Rb atoms and hence the number of available windows of transparency increases. We report the observation of nine such windows. Such multi window EIT systems are capable of storing pulses at the different frequencies, corresponding to these windows hence paving the way for realization of multi frequency quantum memories. Also, the total bandwidth of storage is 218.4 MHz which is two orders of magnitude higher than that typically obtained in single window EIT based storage systems. These systems have tremendous applications in the field of speedy transmission of data over a long distance quantum communication channel.  相似文献   

12.
We experimentally study the controllable generation of a beating signal using stored light pulses based on electromagnetically induced transparency(EIT) in a solid medium. The beating signal relies on an asymmetric procedure of light storage and retrieval. After storing the probe pulse into the spin coherence under the EIT condition, two-color control fields with opposite detunings instead of the initial control field are used to scatter the stored spin coherence. The controllable beating signal is generated due to alternative constructive and destructive interferences in the retrieved signal intensities. The beating of the two-color control fields is mapped into the beating of weak probe fields by using atomic spin coherence. This beating signal will be important in precise atomic spectroscopy and fast quantum limited measurements.  相似文献   

13.
We present a detail analysis of the line shape of electromagnetically induced transparency (EIT) in a Doppler broadened five level atomic system based on density matrix formalism. It has been shown that the velocity averaged EIT line shape in a multilevel system is very sharp. The effect of the ground state decay rates on the EIT peak has also been investigated. The linear and non-linear variations of the EIT line width (FWHM) for different pump and probe power ratios are shown. Considering the D2 transition of 85Rb atom the dependence of EIT width and height on pump power has been experimentally measured. Simulated spectra are compared with the experimentally obtained one. The effect of buffer gas on the EIT peak has also been observed experimentally as well as theoretically.  相似文献   

14.
马永红  周玲 《中国物理 B》2013,22(2):24204-024204
We propose a feasible scheme to generate electromagnetically induced transparency(EIT) and quadripartite macroscopic entanglement in an optomechanical system with one fixed mirror and three movable perfectly reflecting mirrors.We explore the EIT phenomena in this optomechanical system.Results show the appearance of EIT dips in the output field.Moreover,we demonstrate how steady-state quadripartite entanglement can be generated via radiation pressure.We also quantify the bipartite entanglement in each field-mirror subsystem and in the mirror-mirror subsystem.Findings show that a high intensity of entanglement between two subsystems can be achieved.  相似文献   

15.
We report the experimental observation of electromagnetically induced transparency (EIT) in a Doppler broadened rubidium vapour at room temperature for different probe intensities at a fixed pump intensity in a five-level Λ-type system formed by the D2 transition of 85Rb. For a constant pump intensity, we find that the EIT width and height change with the variation of probe intensity. We observe a nonlinear variation of the height of the EIT peak and a linear variation of the width (FWHM) of the EIT signal with probe intensity. In the Doppler broadened multilevel system, we also observe the velocity selective dips along with the EIT signal. A numerical simulation of the probe response signal based on density matrix representation in a five-level system is carried out to reproduce the experimentally observed spectra.  相似文献   

16.
Structural features of the laser radiation self-focusing dynamics in the electromagnetic induced transparency (EIT) band are studied for an atomic system with a Λ-type energy level diagram. Effective nonlinearity of an EIT medium is manifested primarily as nonlinear dispersion (dependence of the group velocity on the wave amplitude). Qualitative analysis of the dynamics of self-action of laser pulses, which is confirmed by numerical simulation, shows that nonlinear evolution of a 3D wave packet follows the scenario of self-focusing, which serves as the background on which the envelope profile turnover and the formation of a shock wave occur at an advanced rate.  相似文献   

17.
We report the experimental observations of double EIT and enhanced EIT signal in a combination of Λ- and V-type multi-level system of the D2 transition of 85Rb atoms interacting with three laser fields. The EIT formation under a Λ-type and V-type systems is also observed separately. It is found that the EIT width in a V-type system becomes narrower than the Λ-type system. Also the effect of frequency detuning of the control laser on the probe absorption profile is studied in presence of Λ- and V-type EIT systems.  相似文献   

18.
We demonstrate coherent optical detection of highly excited Rydberg states (up to n=124) using electromagnetically induced transparency (EIT), providing a direct nondestructive probe of Rydberg energy levels. We show that the EIT spectra allow direct optical detection of electric field transients in the gas phase, and we extend measurements of the fine structure splitting of the nd series up to n=96. Coherent coupling of Rydberg states via EIT could also be used for cross-phase modulation and photon entanglement.  相似文献   

19.
We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (EIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.  相似文献   

20.
We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (FIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号