首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook (BGK) formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The idea behind this approach is to combine the robustness of the BGK scheme with the accuracy of the DG methods in an effort to develop a more accurate, efficient, and robust method for numerical simulations of viscous flows in a wide range of flow regimes. Unlike the traditional discontinuous Galerkin methods, where a Local Discontinuous Galerkin (LDG) formulation is usually used to discretize the viscous fluxes in the Navier-Stokes equations, this DG method uses a BGK scheme to compute the fluxes which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at a cell interface through a simple hybrid gas distribution function. The developed method is used to compute a variety of viscous flow problems on arbitrary grids. The numerical results obtained by this BGKDG method are extremely promising and encouraging in terms of both accuracy and robustness, indicating its ability and potential to become not just a competitive but simply a superior approach than the current available numerical methods.  相似文献   

2.
李启兵  符松 《计算物理》2002,19(6):471-475
介绍了气动BGK格式的最新发展,在此基础上对原格式进行了适当简化.数值验证表明简化后的格式不但保留了原格式的强健性和自动满足熵条件等优点,而且算法更加简明,计算量更小.  相似文献   

3.
We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar--Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at
discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained
between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems.  相似文献   

4.
We prove a new upper bound on the vertical heat transport in Rayleigh-Bénard convection of the form under the assumption that the ratio of Prandtl number over Rayleigh number satisfies where the non-dimensional constant c0 depends on the aspect ratio of the domain only. This new rigorous bound agrees with the (optimal) bound (modulo logarithmic correction) on vertical heat transport for the infinite Prandtl number model for convection due to Constantin and Doering [P. Constantin, C.R. Doering, Infinite Prandtl number convection, J. Stat. Phys. 94 (1) (1999) 159-172] and Doering, Otto and Reznikoff [C.R. Doering, F. Otto, M.G. Reznikoff, Bounds on vertical heat transport for infinite Prandtl number Rayleigh-Bénard convection, J. Fluid Mech. 560 (2006) 229-241]. It also improves a uniform (in Prandtl number) bound for the Nusselt number [P. Constantin, C.R. Doering, Heat transfer in convective turbulence, Nonlinearity 9 (1996) 1049-1060] in the case of large Prandtl number.  相似文献   

5.
Rarefied gas flow behavior is usually described by the Boltzmann equation, the Navier-Stokes system being valid when the gas is less rarefied. Slip boundary conditions for the Navier-Stokes equations are derived in a rigorous and systematic way from the boundary condition at the kinetic level (Boltzmann equation). These slip conditions are explicitly written in terms of asymptotic behavior of some linear half-space problems. The validity of this analysis is established in the simple case of the Couette flow, for which it is proved that the right boundary conditions are obtained.  相似文献   

6.
《中国物理 B》2021,30(9):94701-094701
We report a numerical study of the Prandtl-number(Pr) effects in two-dimensional turbulent Rayleigh-Benard convection.The simulations were conducted in a square box over the Pr range from 0.25 to 100 and over the Rayleigh number(Ra) range from 107 to 1010.We find that both the strength and the stability of the large-scale flow decrease with the increasing of Pr,and the flow pattern becomes plume-dominated at high Pr.The evolution in flow pattern is quantified by the Reynolds number(Re),with the Ra and the Pr scaling exponents varying from 0.54 to 0.67 and-0.87 to-0.93,respectively.It is further found that the non-dimensional heat flux at small Ra diverges strongly for different Pr,but their difference becomes marginal as Ra increases.For the thermal boundary layer,the spatially averaged thicknesses for all the Pr numbers can be described by δ_θ~Ra~(-0.30) approximately,but the local values vary a lot for different Pr,which become more uniform with Pr increasing.  相似文献   

7.
高慧  周晓君 《计算物理》2008,25(1):51-57
针对有壁面边界的可压缩流动问题,提出与基于非等距网格的高精度紧致型差分格式相结合的简化隐式迭代时间推进法,建立求解可压缩Navier-Stokes方程的直接数值模拟方法,提高了计算效率.应用该方法,直接数值模拟两种有壁面边界的二维可压缩流动问题,即可压缩平板边界层流动和可压缩槽道流动.  相似文献   

8.
We formulate a new boundary value problem for the 2D Navier-Stokes system on the unit square. Under some suitable assumptions on the initial velocity, we obtain quantitative decay estimates of the Fourier modes of both the vorticity and the velocity. It is found that in one direction the Fourier modes decay exponentially and along the other direction their decay is only power like.  相似文献   

9.
包芸  高振源  叶孟翔 《物理学报》2018,67(1):14701-014701
本文采用直接数值模拟的并行直接求解方法,计算了Ra=10~(10),0.05≤Pr≤20的系列Prandtl(Pr)数二维湍流热对流.通过流动显示技术,讨论了Pr数对羽流形态和大尺度环流结构的影响.在Ra=10~(10)时,随着Pr数减小,羽流的运动和分布表现出更强的湍流性质,较高Pr数的羽流则表现出较强的规律性,当Pr4.3时,流场中存在明显的大尺度环流和角涡结构.不同Pr数的温度边界层厚度差异不大,并随Pr数存在标度率变化关系.当Pr数较低时,系统的传热Nusselt(Nu)数随着Pr数增加而增加,当Pr数较高时,Nu数随Pr数的变化不敏感.靠近底板处速度脉动随Pr数有显著的变化,Pr数越低速度波动越剧烈.通过底板中心位置水平脉动速度和平均场水平速度最大值给出的雷诺数Re_((u))和Re_(U_(max)),两种Re数随Pr数的变化满足同一标度律,为Re~Pr~(-0.81).  相似文献   

10.
We study the Bhatnagar-Gross-Krook model kinetic equation with a velocity-dependent collision frequency. We derive the conditions that must be verified in order to keep the main physical properties of the Boltzmann equation, i.e.,H-theorem and conservation laws. The particular case of the so-called VHP interaction is considered, and the resulting kinetic equation is solved for a homogeneous and isotropic gas. Overpopulation phenomena are observed and analyzed for some kinds of initial conditions. The results are compared, where possible, with the exact solution of the Boltzmann equation.  相似文献   

11.
12.
13.
In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.  相似文献   

14.
李晨  吴雄华 《计算物理》2006,23(1):10-18
提出一种新的线性化微分求积法(LDQM),将这种目的应用到流函数和涡量形式的Navier-Stokes方程.通过LDQM,非线性方程很容易被解出来,并且容易处理压力的边界条件.为检验本目的,计算了两个数值算例.  相似文献   

15.
An approximation procedure for the Boltzmann equation based on random choices of collision pairs from a fixed velocity set and on discrete velocity models is designed. In a suitable limit, the procedure is shown to converge to the time-discretized and spatially homogeneous Boltzmann equation.  相似文献   

16.
A linearized model of the Boltzmann equation for a relativistic gas is shown to be reducible, in the ultrarelativistic limit and for (1 + 1)-dimensional problems, to a system of three uncoupled transport equations, one of which is well known. A general method for solving these equations is recalled, with a few new details, and applied to the solution of two boundary value problems. The first of these describes the propagation of an impulsive change in a half space and is shown to give an explicit example of the recently proved result that no signal can propagate with speed larger than the speed of light, according to the relativistic Boltzmann equation. The second problem deals with steady oscillations in a half space and illustrates the meaning of certain recent results concerning the dispersion relation for linear waves in relativistic gas.  相似文献   

17.
杨晓成  尚月强 《计算物理》2017,34(6):657-665
基于两重网格离散方法,提出三种求解大雷诺数定常Navier-Stokes方程的两水平亚格子模型稳定化有限元算法.其基本思想是首先在一粗网格上求解带有亚格子模型稳定项的Navier-Stokes方程,然后在细网格上分别用三种不同的校正格式求解一个亚格子模型稳定化的线性问题,以校正粗网格解.通过适当的稳定化参数和粗细网格尺寸的选取,这些算法能取得最优渐近收敛阶的有限元解.最后,用数值模拟验证三种算法的有效性.  相似文献   

18.
In this paper we analytically solve the velocity of the lattice Boltzmann BGK equation (LBGK) for several simple flows. The analysis provides a framework to theoretically analyze various boundary conditions. In particular, the analysis is used to derive the slip velocities generated by various schemes for the nonslip boundary condition. We find that the slip velocity is zero as long as fe=0 at boundaries, no matter what combination of distributions is chosen. The schemes proposed by Nobleet al. and by Inamuroet al. yield the correct zeroslip velocity, while some other schemes, such as the bounce-back scheme and the equilibrium distribution scheme, would inevitably generate a nonzero slip velocity. The bounce-back scheme with the wall located halfway between a flow node and a bounce-back node is also studied for the simple flows considered and is shown to produce results of second-order accuracy. The momentum exchange at boundaries seems to be highly related to the slip velocity at boundaries. To be specific, the slip velocity is zero only when the momentum dissipated by boundaries is equal to the stress provided by fluids.  相似文献   

19.
In this paper we extend recent results on the hydrodynamic Navier-Stokes limit of the stationary Boltzmann equation for the flow of a gas of hard spheres in a channel in the presence of an external force to the case of a hard intermolecular potential with Grad angular cutoff. We prove the convergence of the solution, for small Knudsen numbers, to the Maxwellian with parameters solving the corresponding Navier-Stokes equation. In the present case we only get polynomial decay of the solution for large velocities, instead of the exponential decay which holds for hard spheres.  相似文献   

20.
We discuss the kinetic representation of gases and the derivation of macroscopic equations governing the thermomechanical behavior of a dilute gas viewed at the macroscopic level as a continuous medium. We introduce an approach to kinetic theory where spatial distributions of the molecules are incorporated through a mean-free-volume argument. The new kinetic equation derived contains an extra term involving the evolution of this volume, which we attribute to changes in the thermodynamic properties of the medium. Our kinetic equation leads to a macroscopic set of continuum equations in which the gradients of thermodynamic properties, in particular density gradients, impact on diffusive fluxes. New transport terms bearing both convective and diffusive natures arise and are interpreted as purely macroscopic expansion or compression. Our new model is useful for describing gas flows that display non-local-thermodynamic-equilibrium (rarefied gas flows), flows with relatively large variations of macroscopic properties, and/or highly compressible fluid flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号