首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical formulation of column optimization problems allowing for bimodal optimum buckling loads is developed in this paper. The columns are continuous and linearly elastic, and assumed to have no geometrical imperfections. It is first shown that bimodal solutions exist for columns that rest on a linearly elastic (Winkler) foundation and have clamped-clamped and clamped-simply supported ends. The equilibrium equation for a non-extensible, geometrically nonlinear elastic column is then derived, and the initial post-buckling behaviour of a bimodal optimum column near the bifurcation point is studied using a perturbation method. It is shown that in the general case the post-buckling behaviour is governed by a fourth order polynomial equation, i.e., near the bifurcation point there may be up to four post-buckling equilibrium states emanating from the trivial equilibrium state. Each of these equilibrium states may be either supercritical or subcritical in the vicinity of the bifurcation point. The conditions for stability of these non-trivial post-buckling states are established based on verification of positive semi-definiteness of a two-by-two matrix whose coefficients are integrals of the buckling modes and their derivatives. In the end of the paper we present and discuss numerical results for the post-buckling behaviour of several columns with bimodal optimum buckling loads.  相似文献   

2.
In this paper, the effect of a centrally applied external axial tensile load on the lateral-torsional buckling resistance of simply supported I-beams under uniform bending acting in the plane of maximum rigidity is studied. A linear and a nonlinear analysis are performed. Following the linear analysis, an expression for the critical moment of lateral-torsional buckling is presented in which the influence of the axial tensile force is included. There is an upper limit of this force over which the equilibrium in the deformed state is not possible. In the nonlinear analysis, the nature of the critical state is studied, considering the initial part of the post-buckling path. It is concluded that this critical state is associated with a stable symmetrical bifurcation point. Nevertheless, the post-buckling path is very shallow; therefore, the beam cannot exhibit practically post-buckling strength. The paper is supplemented by a representative example.  相似文献   

3.
For structural systems with a coincident lowest eigenvalue λc, the influence of imperfections on the buckling of the systems depends to a very large extent upon the distribution of the imperfections. Moreover, the system may buckle either at a limit point or at a bifurcation point before this limit point is reached. Considering both possibilities, a lower bound to the buckling load of the system, for a given root mean square of the imperfections, is obtained. Furthermore, with reference to a set of particular, normalized co-ordinates, it was found that the absolute minimum buckling load is given by an imperfection vector parallel to the steepest of all post-buckling paths intersecting at λc. At this absolute minimum buckling load the critical point is a limit point. As an example, the lower bound to the buckling load of an imperfect cylindrical shell under axial compression was calculated.  相似文献   

4.
We study the buckling bifurcation of a compressible hyperelastic slab under compression with sliding–sliding end conditions. The combined series-asymptotic expansions method is used to derive the simplified model equations. Linear bifurcation analysis yields the critical stress value of buckling, which gives a non-linear correction to the classical Euler buckling formula. The correction is due to the geometrical non-linearities coupled with the material non-linearities. Then through non-linear bifurcation analysis, the approximate analytical solutions for the post-buckling deformations are obtained. The amplitude of buckling is expressed explicitly in terms of the aspect ratio, the incremental dimensionless engineering stress, the mode of buckling and the material constants. Most importantly, we find that both supercritical and subcritical buckling could occur for compressible materials. The bifurcation type depends on the material constants, the geometry of the slab and the mode numbers.  相似文献   

5.
This paper gives the perturbation formulation of continuation method for nonlinear equations. Emphasis is laid on the discussion of searching for the singular points on the equilibrium path and of tracing the paths over the limit or bifurcation points. The method is applied to buckling analysis of thin shells. The pre-and post-buckling equilibrium paths and deflections can be obtained, which are illustrated in examples of buckling analysis of cylindrical and toroidal shells.  相似文献   

6.
In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.The complete nonlinear governing equations are discretized via Galerkin’s method and then numerically solved by the use of a fourth-order Runge-Kutta integration algorithm.Different initial conditions are chosen for calculations to show the nonplanar buckling characteristics of the pipe in two perpendicular lateral directions.A detailed parametric analysis is performed in order to study the influence of several key system parameters such as the mass ratio,the flow velocity,and the gravity parameter on the post-buckling behavior of the pipe.Typical results are presented in the form of bifurcation diagrams when the flow velocity is selected as the variable parameter.It is found that the pipe will stay at its original straight equilibrium position until the critical flow velocity is reached.Just beyond the critical flow velocity,the pipe would lose stability by static divergence via a pitchfork bifurcation,and two possible nonzero equilibrium positions are generated.It is shown that the buckling and post-buckling behaviors of the pipe cannot be influenced by the mass ratio parameter.Unlike a pipe with two immovable ends,however,the pinned-pinned pipe with an axially sliding downstream end shows some different features regarding post-buckling behaviors.The most important feature is that the buckling amplitude of the pipe with an axially sliding downstream end would increase first and then decrease with the increase in the flow velocity.In addition,the buckled shapes of the pipe varying with the flow velocity are displayed in order to further show the new post-buckling features of the pipe with an axially sliding downstream end.  相似文献   

7.
Sandwich structures are widely used in many industrial applications thanks to their interesting compromise between lightweight and high mechanical properties. This compromise is realized thanks to the presence of different parts in the composite material, namely the skins which are particularly thin and stiff relative to the homogeneous core material and possibly core reinforcements. Owing to these geometric and material features, sandwich structures are subject to global but also local buckling phenomena which are mainly responsible for their collapse. The buckling analysis of sandwich materials is therefore an important issue for their mechanical design. In this respect, this paper is devoted to the theoretical study of the local/global buckling and post-buckling behavior of sandwich columns under axial compression. Only symmetric sandwich materials are considered with homogeneous and isotropic core/skin layers. First, the buckling problem is analytically addressed, by solving the so-called bifurcation equation in a 3D framework. The bifurcation analysis is performed using an hybrid model (the two faces are represented by Euler–Bernoulli beams, whereas the core material is considered as a 2D continuous solid), considering both an elastic and elastoplastic core material. Closed-form expressions are derived for the critical loadings and the associated bifurcation modes. Then, the post-buckling response is numerically investigated using a 2D finite element bespoke program, including finite plasticity, arc-length methods and branch-switching procedures. The numerical computations enable us to validate the previous analytical solutions and describe several kinds of post-critical responses up to advanced states, depending on geometric and material parameters. In most cases, secondary bifurcations occur during the post-critical stage. These secondary modes are mainly due to the modal interaction phenomenon and give rise to unstable post-buckled solutions which lead to final collapse.  相似文献   

8.
Various static and dynamic aspects of post-buckled thin plates, including the transition of buckled patterns, post-buckling dynamics, secondary bifurcation, and dynamic snapping (mode jumping phenomenon), are investigated systematically using asymptotical and non-stationary finite element methods. In part I, the secondary dynamic instability and the local post-secondary buckling behavior of thin rectangular plates under generalized (mechanical and thermal) loading is investigated using an asymptotic numerical method which combines Koiter’s nonlinear instability theory with the finite element technique. A dynamic multi-mode reduction method—similar to its static single-mode counterpart: Liapunov–Schmidt reduction—is developed in this perturbation approach. Post-secondary buckling equilibrium branches are obtained by solving the reduced low-dimensional parametric equations and their stability properties are determined directly by checking the eigenvalues of the resulting Jacobian matrix. Typical post-secondary buckling forms—transcritical, supercritical and subcritical bifurcations are observed according to different combinations of boundary conditions and load types. Geometric imperfection analysis shows that not only the secondary bifurcation load but also changes in the fundamental post-secondary buckling behavior are affected. The post-buckling dynamics and the global analysis of mode jumping of the plates are addressed in part II.  相似文献   

9.
环形板的非轴对称屈曲分析   总被引:1,自引:0,他引:1  
本文利用打靶法研究了内外边界固支且在外边界受均匀径向压力作用下的极正交各向异性环形板的非轴对称屈曲和过屈曲,计算了临界载荷,讨论了分支解的存在性,得到了分支解的渐近表达式,分析了环形板的屈曲性态。  相似文献   

10.
环形板的非轴对称屈曲分析   总被引:3,自引:0,他引:3  
程昌钧  段薇 《力学学报》1990,22(4):473-478
本文利用打靶法研究了内外边界固支且在外边界受均匀径向压力作用下的极正交各向异性环形板的非轴对称屈曲和过屈曲,计算了临界载荷,讨论了分支解的存在性,得到了分支解的渐近表达式,分析了环形板的屈曲性态。  相似文献   

11.
尚新春  程昌钧 《力学学报》1992,24(2):240-246
本文应用分支理论和打靶法研究了环形板屈曲与过屈曲的横向剪切效应  相似文献   

12.
Summary The influence of shear deformation on the buckling behavior of a beam supported laterally by a Winkler elastic foundation is studied. A full investigation of the bifurcation points at which, under axial load, the beam becomes critical with respect to one or two simultaneous buckling modes is made. The configurations and stabilities of the equilibrium paths that bifurcate from the critical points are derived. From the results of theoretical analysis, it becomes evident that shear deformation has a considerable effect upon the equilibriums and stabilities of the post-buckling of the beam. The results for the Bernoulli-Euler beam can be obtained as a limiting case for those of the present beam by letting the shear stiffness tend to infinity.Supported by the National Natural Science Foundation of China  相似文献   

13.
14.
吴柏生 《力学学报》1993,25(4):443-451
本文研究弹性基础上受轴向加载的两端铰支杆当其最低两屈曲荷载很近时的后屈曲行为。首先,使用Liapunov-Schmidt约化并借助稳定性分析,揭示了杆的二次屈曲现象;基于分叉方程给出了原始后屈曲分支及二次分支的渐近展开。其次,我们使用作者建立的二次分叉的计算方法对杆的二次屈曲做了数值计算,数值结果与渐近展开符合得很好  相似文献   

15.
An investigation of the mechanics of bending and buckling is carried out for a class of nonlinear fiber composite rods composed of embedded unidirectional fibers parallel to the rod axis. The specific class of composite considered is one in which the fibers interact with the matrix through a nonlinear Needleman-type cohesive zone [Needleman, A., 1987. A continuum model for void nucleation by inclusion debonding. ASME J. Appl. Mech. 54, 525-531; Needleman, A., 1992. Micromechanical modelling of interfacial decohesion. Ultramicroscopy 40, 203-214]. The primary decohesive mechanism active in bending and buckling of these composite rods is shear slip along the fiber-matrix interfaces allowing the use of a previously developed constitutive relation for antiplane shear response [Levy, A.J., 2000b. The fiber composite with nonlinear interface—part II: antiplane shear. ASME J. Appl. Mech. 67, 733-739]. The formulation requires the specification of a potential interface force-slip law that is assumed to permit interface failure in shear.Four cases of the bending and shearing of beams (concentrated or uniform load on a cantilever or a simply supported beam) are analyzed, each of which exhibits qualitatively distinct response. For certain values of interface parameters, the beam deflection or its gradient at a fixed location can change discontinuously with load. Furthermore, for interface parameter values within a certain range, singular surfaces will exist in uniformly loaded beams where there is a non-uniform distribution of shear stress along the beam length. These singular surfaces divide the beam into regions of maximal and minimal fiber slip and propagate with a rate that varies inversely as the square of the applied load. For other parameter values, singular surfaces will not exist and fiber slip will be diffuse.For the class of nonlinear composite considered, bifurcation and imperfection buckling of pinned-pinned columns is analyzed. For bifurcation buckling, a nonlinear eigenvalue problem is derived and the solution is obtained by Galerkin's method. It is demonstrated that critical loads are influenced by the initial slope, and hence the linear portion, of the interface force-slip relation but the post-buckling response, which in some sense resembles that of plastic buckling, is affected by the entire interface constitutive relation. Imperfection buckling is analyzed in a similar manner by assuming a slight initial curvature of the rod. Sensitivity of the response to imperfection magnitude is discussed as well.  相似文献   

16.
提出了周期结构后屈曲分析的一种新算法。在屈曲点附近,通过加载模型和诱导后屈曲边值问题之间的相互切换,避开屈曲点附近刚度矩阵的奇异性,并诱导结构产生预期的后屈曲变形,避免了以往后屈曲算法中引入几何初始缺陷后对系统带来的可能影响。通过对三种由超弹性材料所构成的周期孔隙结构的后屈曲分析,验证了本文所提出的后屈曲算法的有效性和灵活性。分析了周期孔隙材料多向加载对屈曲模式转换的影响,以及后屈曲变形对弹性波传播带隙的影响,为周期结构中弹性波传播的调控提供良好的基础。  相似文献   

17.
The present paper examines instabilities of long thin elastic tubes. Both initially straight and initially bent tubes are analyzed under in-plane bending. Tube response, a combination of ovalization instability and bifurcation instability (buckling), is investigated using a nonlinear finite element (FE) technique, which employs polynomial functions in the longitudinal tube direction and trigonometric functions to describe cross-sectional deformation. It is demonstrated that the interaction between the two instability modes depends on the value and the sign of the initial tube curvature. The ovalization of initially bent tubes is examined in detail and, in particular, the case of opening moments. Furthermore, the paper emphasizes on bifurcation instability. It is shown that buckling may occur prior to or beyond the ovalization limit point, depending on the value of the initial curvature. Using the nonlinear FE formulation, the location of bifurcation on the primary path is detected, post-buckling equilibrium paths are traced, and the corresponding wavelengths of the buckled configurations are calculated. Moreover, results over a wide range of initial curvature values are presented, extending the findings of previous works. Finally, several analytical approaches, introduced in previous research works, are also employed to estimate the moments causing ovalization and bifurcation instability. These approaches are based on nonlinear flexible shell theory or simplified ring analysis. The efficiency and accuracy of those analytical methods with respect to the nonlinear FE formulation are examined.  相似文献   

18.
This paper presents a theoretical analysis for the long-term non-linear elastic in-plane behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches. It is known that an elastic shallow arch does not buckle under a load that is lower than the critical loads for its bifurcation or limit point buckling because its buckling equilibrium configuration cannot be achieved, and the arch is in a stable equilibrium state although its structural response may be quite non-linear under the load. However, for a CFST arch under a sustained load, the visco-elastic effects of creep and shrinkage of the concrete core produce significant long-term increases in the deformations and bending moments and subsequently lead to a time-dependent change of its equilibrium configuration. Accordingly, the bifurcation point and limit point of the time-dependent equilibrium path and the corresponding buckling loads of CFST arches also change with time. When the changing time-dependent bifurcation or limit point buckling load of a CFST arch becomes equal to the sustained load, the arch may buckle in a bifurcation mode or in a limit point mode in the time domain. A virtual work method is used in the paper to investigate bifurcation and limit point buckling of shallow circular CFST arches that are subjected to a sustained uniform radial load. The algebraically tractable age-adjusted effective modulus method is used to model the time-dependent behaviour of the concrete core, based on which solutions for the prebuckling structural life time corresponding to non-linear bifurcation and limit point buckling are derived.  相似文献   

19.
受圆形表面单面约束的点锚固圆环热屈曲分析   总被引:1,自引:0,他引:1  
应用W.T.Koiter的初始后屈曲理论,研究了受圆形混凝土表面单面约束的点锚固圆环的热屈曲问题,根据混凝土容器壁的几何约束条件,假设了圆环的合理屈曲模状,得出了圆环在两锚固点之间发生屈曲的临界温度,并研究了其后屈曲性态和缺陷敏感性。结果表明,临界点和后屈曲路径的平衡均为稳定的,圆环对于与屈曲模态形状相同的缺陷是不敏感的。  相似文献   

20.
针对复合材料典型多墙盒段,采用试验和有限元分析相结合的方法,研究了弯扭耦合载荷作用下的稳定性、承载能力及损伤起始、扩展情况.试验采用数字图像相关(Digital Image Correlation, DIC)测量方法捕捉试验件屈曲模态的变化过程,通过载荷-应变曲线获得屈曲和后屈曲破坏载荷.数值仿真基于ABAQUS/Explicit模块,采用Hashin准则结合刚度降的VUSDFLD子程序模拟复合材料的屈曲和后屈曲行为.研究结果表明,多墙盒段在弯扭载荷组合作用下发生屈曲时,扭矩会改变屈曲模态的分布形式和对称性,屈曲鼓包依然保持波峰、波谷交替出现;多墙盒段后屈曲阶段历程较长,屈曲模态由一阶向高阶逐渐发展,直到结构发生过大变形,彻底破坏而失去承载能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号