共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Usselman RJ Walter ED Willits D Douglas T Young M Singel DJ 《Journal of the American Chemical Society》2011,133(12):4156-4159
This work describes an approach for calculating and measuring dipolar interactions in multispin systems to monitor conformational changes in icosahedral protein cages using site-directed spin labeling. Cowpea chlorotic mottle virus (CCMV) is used as a template that undergoes a pH-dependent reversible capsid expansion wherein the protein cage swells by 10%. The sequence-position-dependent geometric presentation of attached spin-label groups provides a strategy for targeting amino acid residues most probative of structural change. The labeled protein cage residues and structural transition were found to affect the local mobility and dipolar interactions of the spin label, respectively. Line-shape changes provided a spectral signature that could be used to follow the conformational change in CCMV coat dynamics. The results provide evidence for a concerted swelling process in which the cages exist in only two structural forms, with essentially no intermediates. This methodology can be generalized for all symmetry types of icosahedral protein architectures to monitor protein cage dynamics. 相似文献
3.
应用双向电泳和质谱联用技术,对不同乳源蛋白的差异性进行了研究。根据ImageMaster 2DPlatinum图像分析软件对不同乳源酪蛋白和乳清蛋白的双向电泳(2-DE)图谱进行蛋白斑点的匹配分析,获得21个存在于水牛奶中主要分布在低丰度蛋白区的酪蛋白差异蛋白点和24个存在于水牛奶中乳清蛋白差异蛋白点。这些差异蛋白点经质谱鉴定分析,得到4个属于水牛奶酪蛋白的主要组分和2个与水牛奶中酪蛋白有较高同源性的新组分,同时获得4个属于水牛奶乳清蛋白的主要组分和3个与水牛奶中乳清蛋白有较高同源性的组分。 相似文献
4.
A novel multifunctional labeling reagent for enhanced protein characterization with mass spectrometry. 总被引:2,自引:0,他引:2
E C Peters D M Horn D C Tully A Brock 《Rapid communications in mass spectrometry : RCM》2001,15(24):2387-2392
Individual peptides with lysine at the C-terminus as well as protein tryptic digests were reacted with 2-methoxy-4,5-dihydro-1H-imidazole, converting lysine residues to their 4,5-dihydro-1H-imidazol-2-yl derivatives. The mass spectra of derivatized digests exhibit a greater number of more intense features than their underivatized counterparts, thus increasing the information obtained in peptide mapping experiments. Additionally, MS/MS spectra of the derivatized peptides are greatly simplified in comparison to their native species, yielding primarily an easily interpretable series of y-ions. Finally, this novel label also enables differential quantitation studies, as a stable isotopic form containing four deuterium atoms can readily be produced. 相似文献
5.
Sinz A Kalkhof S Ihling C 《Journal of the American Society for Mass Spectrometry》2005,16(12):1921-1931
Chemical cross-linking of protein complexes has gained renewed interest in combination with mass spectrometric analysis of the reaction products as it allows a rapid mapping of protein interfaces, which is crucial for understanding protein/protein interactions. The identification of cross-linking products from the complex mixtures created after the cross-linking reaction, however, remains a daunting task. To facilitate the identification of cross-linking products, we explore the use of the commercially available biotinylated cross-linking reagent sulfo-SBED (sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azidobenzamido)-hexanoamido]ethyl-1,3'-dithiopropionate). This trifunctional cross-linker possesses one amine-reactive and one photo-reactive site and, additionally, allows an affinity-based enrichment of cross-linker containing species. As a model system, we chose the Ca(2+)-dependent complex between calmodulin and its target peptide M13, which represents a part of the C-terminal sequence of the skeletal muscle myosin light chain kinase. After the cross-linking reaction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and one-dimensional gel electrophoresis were employed to check for the extent of cross-linking product formation. The cross-linking reaction mixtures were subjected to tryptic in-solution digestion. Biotinylated peptides, e.g., peptides that had been modified by the cross-linker as well as cross-linked peptides, were enriched on monomeric avidin beads after several washing steps had been performed. Peptide mixtures were analyzed by MALDI-TOFMS, nano-high-performance liquid chromatography (HPLC)/nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS), and tandem MS. We demonstrate that an enrichment of cross-linker containing species allows a more efficient identification of interacting amino acid sequences in protein complexes. This strategy is expected to be especially beneficial for investigating large protein assemblies. 相似文献
6.
Taking the labeling reaction of horse heart cytochrome c or ubiquitin with biotinamidocaproate N-hydroxysucchinimide ester (biotin-NHS) as test cases, this report demonstrates the usefulness of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for in-situ monitoring of the labeling process and for determining the composition of the labeled products without the need for prior separation. The effects of pH and starting materials concentration on the labeling process were investigated in detail. Our MALDI MS results show that: (1) labeled products are always mixtures of different conjugates, which may explain peak broadening found in chromatographic studies of labeling reactions; (2) the higher conjugate fractions become more prominent as the labeling reaction proceeds, with a concomitant exponential decline of the lower conjugate fractions; (3) biotin-NHS can be incorporated into peptides and protein in a stepwise and controlled manner simply by adjusting the molar ratio of the starting materials. 相似文献
7.
8.
Taking the labeling reaction of horse heart cytochrome c or ubiquitin with biotinamidocaproate N-hydroxysucchinimide ester (biotin-NHS) as test cases, this report demonstrates the usefulness of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for in-situ monitoring of the labeling process and for determining the composition of the labeled products without the need for prior separation. The effects of pH and starting materials concentration on the labeling process were investigated in detail. Our MALDI MS results show that: (1) labeled products are always mixtures of different conjugates, which may explain peak broadening found in chromatographic studies of labeling reactions; (2) the higher conjugate fractions become more prominent as the labeling reaction proceeds, with a concomitant exponential decline of the lower conjugate fractions; (3) biotin-NHS can be incorporated into peptides and protein in a stepwise and controlled manner simply by adjusting the molar ratio of the starting materials. 相似文献
9.
The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards. 相似文献
10.
Ciucanu I 《Analytica chimica acta》2006,576(2):147-155
Per-O-methylation of carbohydrates is an important sample preparation step in structural analysis of complex carbohydrates, which has generated considerable interest as shown by thousands of citations in the last 10 years. This article provides a critical overview of the per-O-methylation methods applied for structural analysis of carbohydrates by mass spectrometry. The understanding of the O-methylation mechanism can help the researchers to apply the adequate O-methylation method and can generate new ideas in the effort of improving this reaction. The per-O-methylation of carbohydrates is relied upon stepwise reactions. The parameters that affect the reaction are discussed for the most important methods and are critically commented for each reaction step. The limits of each method are emphasized. The improvements of the per-O-methylation reaction are described in detail with their advantages and disadvantages and some illustrative examples are given. The methods that give complete O-methylation in non-hazardous conditions with high yields within minutes at room temperature with a very low amount of side-products are especially highlighted. 相似文献
11.
A new approach for screening plasma protein binding is presented. The method is based on equilibrium dialysis combined with rapid generic LC-MS bioanalysis by using a sample pooling approach enabling high-throughput screening of protein binding in the drug discovery phase. The method is evaluated by a comparison of measured unbound free fractions f(u) (%) between single and pooled compounds for a test set of structurally diverse compounds with a wide range of unbound fractions. Test compounds include 1 acidic and 10 basic drug standards along with 36 new chemical entities. A good correlation (R2>0.95) of f(u) (%) between the single and pooled compounds is found, suggesting that at least 10 compounds can be simultaneously measured with acceptable accuracy. A simplified drug-protein binding model is applied to calculate the f(u) (%) of drugs at various drug and protein concentrations and this is applied to elucidate the applicability of the sample pooling approach from a theoretical standpoint. Moreover, pH shifts in the plasma were observed after dialysis when using different types of buffers and the impact of that on the f(u) is illustrated in association with their physicochemical properties, in particular the ionization state of compounds by the profile of effective mobility as a function of pH. A new buffer is proposed being able to minimize the pH shift of plasma during the dialysis. In addition, the application of the proposed buffer does not necessarily require adjusting plasma pH before the dialysis and utilizing a CO2 incubator during the dialysis. The effect of the ionic strengths of different buffers on MS signals is investigated with regard to ion suppression. The sample pooling method not only significantly reduces the plasma volume required but also the number of bioanalysis samples as compared to the single compound measurements by a conventional approach. The new proposed approach is especially beneficial for measuring in vitro protein binding in matrices such as mouse plasma where plasma is available only in limited amounts. The current new development will facilitate the drug discovery process by more rapidly assessing the protein binding potential of drug candidates. 相似文献
12.
Nilsson CL Cooper HJ Håkansson K Marshall AG Ostberg Y Lavrinovicha M Bergström S 《Journal of the American Society for Mass Spectrometry》2002,13(4):295-299
Borrelia burgdorferi sensu lato is a tick-borne pathogen that causes Lyme disease. The characterization of membrane proteins from this and other pathogens may yield a better understanding of the mechanisms of infection and information useful for vaccine design. Characterization of the highly hydrophobic Borrelia outer membrane component P13 from a mutant (OspA- OspB- OspC- and OspD-) strain was undertaken by use of a combination of mass spectrometric methods. In a previous investigation, an electrospray ionization (ESI) mass spectrum of the intact protein provided an average molecular weight that was 20 Da lower than the predicted molecular weight. The mass deviation could be explained by a modification of the N-terminus of the protein such as pyroglutamylation (-17 Da) in combination with the experimental error of measurement, however more information was required. New structural information for this membrane protein was provided by peptide mapping with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) and sequencing with ESI-quadrupole-TOF tandem MS. 相似文献
13.
Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
F. Fournier B. Remaud T. Blasco J. C. Tabet 《Journal of the American Society for Mass Spectrometry》1993,4(4):343-351
The behavior of para-hydroxy-benzyl and hydroxy-phenylethyl fatty acid esters and methoxy derivatives toward the NH3/NH2 ? system was investigated. Under these negative ion chemical ionization (NICI) conditions, proton abstraction takes place mainly at the more acidic site (i.e., phenol); however, this reaction is not entirely regioselective. Using NICI-ND3 conditions, both isomeric phenoxide and enolate molecular species are produced in competition from these phenol esters. Their respective low-energy collision-activated dissociation spectra are studied, and they strongly differ, showing that these molecular species are not convertible to a common structure. Analysis of specific fragmentations of the OD-enolate parent species labeled by ND3 in the gas phase, indicates that by charge-promoted cleavage, isomerization into an ion-dipole intermediate takes place prior to dissociation. This complex, containing a ketene moiety, isomerizes into different isomeric forms via two consecutive proton transfers: the first, which is very exothermic, is irreversible in contrast to the second, less exothermic reaction, which occurs via a reversible process. It is evidenced by the loss of labeling at phenol or enolizable sites in the fragment ions. Such a stepwise process does not take place from the phenoxide parent ion, which preferentially yields a very stable carboxylate ion. A thermochemical approach, using estimated acidity values, yields a rationalization of the observed reactivities of the various substrates studied. 相似文献
15.
E. Kurian F. G. Prendergast A. J. Tomlinson M. W. Holmes S. Naylor 《Journal of the American Society for Mass Spectrometry》1997,8(1):8-14
A strategy for rapidly identifying the number and sites of chemical or posttranslational modification of proteins is described. The use of matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry to determine the molecular weight of the adducted protein as well as map the proteolytic digest of peptides offers a rapid method to screen for the possible site of adduction. To unequivocally determine the amino acid sequence of the peptide bearing the adduct as well as structurally characteize the covalent modification, the peptide mixture is subjected to membrane preconcentration-capillary electrophoresis-mass spectrometry and tandem mass spectrometry (mPC-CE-MS/MS). The high resolving separation capability of capillary electrophoresis (CE) afford a chromatograhic step that lends itself to separation of complex mixtures of peptides with minimal sample loss. The membrane preconcentration-CE cartridge allows sample loading volumes 10,000-fold greater than conventional CE. In this work the binding site of the fluorescent label acrylodan to the intestinal fatty binding protein is characterized and shown to be covalently bound at lysine-27, by using mPC-CE-MS/MS. 相似文献
16.
A reversed-phase liquid chromatography/tandem multistage mass spectrometry (MS/MS) method was developed for the characterization of amides from the extracts of Piper longum. The characteristic fragmentations of the amides found in P. longum showed diagnostic structural information. Extracted ion chromatography (EIC) and constant neutral losses were used to guide the search for the amides of interest. Amides of known structures that contain four subtypes of amides were rapidly determined, and novel amides were also identified for this plant. Forty-two amides were rapidly identified, of which 22 were found in this plant for the first time and 9 were new compounds. The method is convenient and sensitive, especially for minor components in the unpurified, complex mixture; the structures of unknown constituents could be determined, in the absence of authentic sample, by comparison of the fragmentation patterns with those of homologous compounds. 相似文献
17.
Areces LB Matafora V Bachi A 《European journal of mass spectrometry (Chichester, England)》2004,10(3):383-392
Phosphorylation is one of the most frequently occurring post-translational modifications in proteins. In eukaryotic cells, protein phosphorylation on serine, threonine and tyrosine residues plays a crucial role as a modulator of protein function. A comprehensive analysis of protein phosphorylation involves the identification of the phosphoproteins, the exact localization of the residues that are phosphorylated and the quantitation of phosphorylation. In this short review we will summarize and discuss the methodologies currently available for the analysis and full characterization of phosphoproteins with special attention at mass spectrometry-based techniques. In particular, we will discuss affinity-based purification of phosphopeptides coupled to MALDI-TOF analysis, their detection using mass mapping and precursor ion scan, identification of modified sites by MS/MS and quantitation analysis 相似文献
18.
Eyles SJ Dresch T Gierasch LM Kaltashov IA 《Journal of mass spectrometry : JMS》1999,34(12):1289-1295
The unfolding dynamics of cellular retinoic acid-binding protein I (CRABP I), an 18 kDa predominantly beta-sheet protein, were studied by monitoring the hydrogen-deuterium (H-D) exchange reaction under various solution conditions. A bimodal charge state distribution was observed when a denaturing agent was added to the protein aqueous solution. These two populations exhibit different kinetics of H-D exchange, with the high charge state ions undergoing very rapid isotope exchange, while the low charge state protein ions exchange cooperatively but at much slower rates. Transiently populated intermediate states were detected indirectly using hydrogen exchange measurement in aqueous solution at various pHs. At pH 2.5 and room temperature, three distinct populations of CRABP I ions exist over an extended period of time, each corresponding to a specific degree of backbone amide hydrogen atom protection. Mass spectral data are complementary to hydrogen exchange measurements by NMR, since the former samples a much faster time-scale of dynamic events in solution. 相似文献
19.
Differentiation of vegetable oils by mass spectrometry combined with statistical analysis 总被引:3,自引:0,他引:3
Jakab A Nagy K Héberger K Vékey K Forgács E 《Rapid communications in mass spectrometry : RCM》2002,16(24):2291-2297
The main triacylglycerol (TAG) composition of different plant oils (almond, avocado, corn germ, grape seed, linseed, mustard seed, olive, peanut, pumpkin seed, sesame seed, soybean, sunflower, walnut and wheat germ) were analyzed using two different mass spectrometric techniques: HPLC/APCI-MS (high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry) and MALDI-TOFMS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry).Linear discriminant analysis (LDA) as a multivariate mathematical statistical method was successfully used to distinguish different plant oils based on their relative TAG composition. With LDA analysis of either APCI-MS or MALDI-MS data, the classification among the almond, avocado, grape seed, linseed, mustard seed, olive, sesame seed and soybean oil samples was 100% correct. In both cases only 6 different oil samples from a total of 73 were not classified correctly. 相似文献
20.
Yuzhong Deng Zhongqi Zhang David L. Smith 《Journal of the American Society for Mass Spectrometry》1999,10(8):675-684
In contrast to the rigid structures portrayed by X-ray diffraction, proteins in solution display constant motion which leads to populations that are momentarily unfolded. To begin to understand protein dynamics, we must have experimental methods for determining rates of folding and unfolding, as well as for identifying structures of folding and unfolding intermediates. Amide hydrogen exchange has become an important tool for such measurements. When urea is used to stabilize unfolded forms of proteins, the refolding rates may become slower than the rates of isotope exchange. In such cases, the intermolecular distribution of deuterium among the entire population of molecules may become bimodal, giving rise to a bimodal distribution of isotope peaks in mass spectra of the protein or its peptic fragments. When the protein is exposed continuously to D2O, the relative intensities of the two envelopes of isotope peaks give an integrated account of populations participating in the folding/unfolding process. However, when the protein is exposed only briefly to D2O, the relative intensities of the two envelopes of isotope peaks give an instantaneous measure of the folded/unfolded populations. Application of these two labeling methods to a large protein, aldolase, is described along with a discussion of specific parameters required to optimize these experiments. 相似文献