首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work we describe the first report for the determination of promazine using a nanostructuremodified ionic liquid carbon paste electrode in aqueous solutions. To achieve this goal, a novel modified carbon paste electrode using ZnO nanoparticles and 1-methyl-3-butylimidazolium bromide as a binder(ZnO/NPs/ILs/CPE) was fabricated. The oxidation peak potential of promazine at the surface of the ZnO/NPs/ILs/CPE appeared at 685 m V, which was about 65 m V lower than the oxidation potential at the surface of CPE under similar conditions. Also, the peak current was increased to about 4.0 times higher at the surface of ZnO/NPs/ILs/CPE compared to that of CPE. The linear response range and detection limit were found to be 0.08–450 and 0.04 mmol/L, respectively. The modified electrode was successfully used for the determination of promazine in real samples with satisfactory results.  相似文献   

2.
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.  相似文献   

3.
Au/Ce1xZrxO2 catalysts (x=0-0.8) were prepared by a deposition-precipitation method using Ce1xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Ce1xZrxO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au 0 especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303 333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Ce1xZrxO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Ce1xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.  相似文献   

4.
The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0-8-7.0×106 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples.  相似文献   

5.
In this work,the electrochemical oxidation of L-cysteine(CySH)was investigated on a composite film modified electrode with Au nanoparticles dispersed in the fluorocarbon polymer(Nafion).The excellent electrocatalytic effect on CySH oxidation was attributed to the role of Au nanoparticles.The voltammetric studies revealed two anodic peaks for the oxidation of CySH in the pH range of 2.0–8.0.The electrode was used to detect cysteine at pH 2.0 and pH 7.0.At pH 2.0,a determination range of 3.0–50.0?mol/L was ob...  相似文献   

6.
Gold was supported on commercial ZnO powders(P) and homemade ZnO nanowires(NWs) by a modified deposition–precipitation method. X-ray diffraction and transmission electron microscopy investigation indicated that the size of the Au nanoparticles(NPs) depended strongly on the calcination temperature.The Au NPs were highly dispersed( 5 nm) on both supports with calcination temperatures 400 °C.However, after calcination at 600 °C the Au NPs aggregated much more severely on ZnO P than on ZnO NWs. Gold NPs epitaxially grew into the {10–10} facets of the ZnO NWs after calcination at temperatures 400 °C. Such unique anchoring mechanism accounts for the much better experimentally observed sintering resistance. X-ray photoelectron spectra showed that Au existed as both metallic Au0 and Auδ+species in all the synthesized catalysts with or without calcination treatment; the ratios of Auδ+/Au0,however, varied, depending on the treatment conditions. Catalytic tests showed that the activity for CO oxidation strongly depended on the size of the Au NPs. After calcination at 600 °C, the specific rate for CO oxidation at room temperature decreased about 30 times on Au/ZnO P but only about 4 times on Au/ZnO NW. Stability tests demonstrated that the Au/ZnO NW catalysts had better stability for CO oxidation.  相似文献   

7.
The catalytic activity of nanostructured low percent (1%) Co-Ni catalysts on the basis of glass fiber (GF) prepared by a"solution combustion" (SC) method was studied.The catalytic activity of the prepared samples was studied in the reaction of dry reforming of methane (DRM) with CO2.The obtained samples were characterized by a number of physico-chemical methods,including XRD,SEM,TEM,TGA and AFM.The active component was shown to be dispersed in the near-surface layer of the support as nanoparticles of 10—20 nm in size.The active component showed a Co3O4 or(Co,Ni)Co2O4 spinel structure,depending on the catalyst composition.The spinel structure of the active component interacted strongly with the carrier,providing resistance to carbonization,high catalytic activity toward DRM,and high activity and stability in oxidation reactions.  相似文献   

8.
ZnO nanoparticles(NPs)with different contents of Ag dopants were obtained by one-step solvothermal method.The crystalline structures of the prepared composites were characterized by means of X-ray diffraction(XRD).The morphology and composition of the samples were studied by means of scanning transmission electron microscopy(TEM)5 X-ray photoelectron spectroscopy(XPS)and electron microscopy(SEM).Photoluminescence(PL)spectra have been used to investigate pure ZnO,Ag-ZnO and Ag-ZnO-PVP NPs to determine the effect of composition on PL properties.It was found that the Ag-ZnO samples showed stronger emissions than pure ZnO.The catalytic activity of samples was measured by the degradation rate of R6G,which exhibited that Ag-ZnO nanocomposite demonstrated enhanced photocatalytic activity compared to the pure ZnO NPs.The possible influence factors to the photocatalytic and antibacterial activities of the sample were explored,including Ag contents and dispersion.It was presented that the photocatalytic activity of Ag-ZnO-PVP was better than that of Ag-ZnO and it showed the highest photocatalytic activity with 7%of Ag content.The Ag-ZnO-PVP can kill the Escherichia coli(E.coli)cells.  相似文献   

9.
Palladium nanoparticles were prepared by thermally assisted reduction using glutathione as reduction agent. The Pd loading on CeO2 for CO oxidation was optimized to 1.5 wt%. The catalysts reduced at 350 C show the highest activity for CO oxidation, which achieve 100% CO conversion at 70℃.  相似文献   

10.
表面修饰In纳米微粒的声化学法制备及结构表征   总被引:3,自引:0,他引:3  
Surface modified indium nanoparticles were prepared by a simple and rapid process from bulk indium via ultrasound dispersion. The morphology and structure of synthesized nanoparticles were characterized by TEM, XRD, XPS and FTIR. The results show that the morphology of indium nanoparticles is spherical and the structure of indium nanoparticles is the tetragonal phase. The surface of indium nanoparticles was coated by 2 ethyl hexanoic acid, which could almost hold back oxidation of the indium nanoparticles. In addition, the tribological property of indium nanoparticles as additives in oil was evaluated on a four-ball tester and the results show that indium nanoparticles exhibit good performance in wear.  相似文献   

11.
Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性   总被引:11,自引:0,他引:11  
 用焙烧前驱物碱式碳酸锌的方法制备了ZnO纳米粒子,采用光还原沉积贵金属的方法制备了Pd/ZnO和Ag/ZnO复合纳米粒子,并利用ICP,XRD,TEM和XPS等测试技术对样品进行了表征,初步探讨了贵金属在ZnO纳米粒子表面形成原子簇的原因.以光催化氧化气相正庚烷为模型反应,考察了样品的光催化活性以及贵金属沉积量对催化剂活性的影响.结果表明:沉积适量的贵金属,ZnO纳米粒子光催化剂的活性大幅度提高.同时,深入探讨了表面沉积贵金属的ZnO纳米粒子光催化剂活性有所提高的内在原因.  相似文献   

12.
微量吸附量热法研究氧化物催化剂的酸碱性质   总被引:6,自引:0,他引:6  
利用微量吸附量热技术定量地表征了Eu2O3、CeO2、MgO、ZnO、Al2O3和NiO等氧化物表面酸碱中心的强度和数量,结果表明,样品的NH3和CO2起始吸附热与其Sanderson电负性相关.  相似文献   

13.
The catalytic performances of supported gold nanoparticles depend critically on the nature of support. Here, we report the first evidence of strong metal-support interactions (SMSI) between gold nanoparticles and ZnO nanorods based on results of structural and spectroscopic characterization. The catalyst shows encapsulation of gold nanoparticles by ZnO and the electron transfer between gold and the support. Detailed characterizations of the interaction between Au nanoparticles and ZnO were done with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and FTIR study of adsorbed CO. The significance of the SMSI effect is further investigated by probing the efficiency of CO oxidation over the Au/ZnO-nanorod. In contrast to the classical reductive SMSI in the TiO(2) supported group VIII metals which appears after high temperature reduction in H(2) with electron transfer from the support to metals, the oxidative SMSI in Au/ZnO-nanorod system gives oxygen-induced burial and electron transfer from gold to support. In CO oxidation, we found that the oxidative SMSI state is associated with positively charged gold nanoparticles with strong effect on its catalytic activity before and after encapsulation. The oxidative SMSI can be reversed by hydrogen treatment to induce AuZn alloy formation, de-encapsulation, and electron transfer from support to Au. Our discovery of the SMSI effects in Au/ZnO nanorods gives new understandings of the interaction between gold and support and provides new way to control the interaction between gold and the support as well as catalytic activity.  相似文献   

14.
Zirconia nanoparticles modified by barium oxide or magnesium oxide were synthesized by using a co-precipitation process followed by ethanol supercritical drying. The nanoparticles obtained were further calcined at 873 K. BET surface area, XRD, and TGA were used to characterize the prepared samples. Isotherms of N2 and CO2 adsorption on these modified zirconia nanoparticles were measured at various temperatures. Additions of BaO or MgO resulted in an increase in CO2 adsorption capacity of the modified zirconia particles. Results also show that BaO as a modifier is more effective than MgO in enhancing the CO2 adsorption capacity of zirconia. At 1 bar and 473 K, Ba modified zirconia adsorbs approximately 0.25 mmol/g of CO2.  相似文献   

15.
A method is proposed for the preparation of nanosized ZnO/MgO systems by the deposition of previously formed zinc oxide nanoparticles onto a support from a colloidal solution and for determination of the size of the deposited ZnO particles from the electronic spectra. The morphology of composites containing zinc oxide nanoparticles was investigated by electronic spectroscopy and transmission electron microscopy. The possibility of synthesizing solid-phase ZnO/MgO quantum systems with controllable size characteristics was demonstrated. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 3, pp. 183–188, May–June, 2007.  相似文献   

16.
The surface state of Rh/MgO catalysts modified with Co, Ni, Fe, or CeO(2) after the reduction and partial oxidation pretreatments as well as during the catalytic partial oxidation of methane has been investigated by FTIR of adsorbed CO. The results of CO adsorption on the reduced catalysts suggest the formation of Rh-M alloy on Rh-M/MgO (M = Co, Ni, Fe) and Rh particles partially covered with reduced ceria on Rh-CeO(2)/MgO. The strength of CO adsorption on Rh/MgO is weakened by the modification with Co, Ni, Fe, or CeO(2). Partial oxidation pretreatment of Rh/MgO leads to a significant decrease in the CO adsorption due to the oxidation of Rh. In contrast, on partially oxidized Rh-M/MgO (M = Co, Ni, Fe) and Rh-CeO(2)/MgO, the preferential oxidation of the surface M atoms or reduced ceria maintains the metallic Rh and preserves the CO adsorbed on the surface Rh atoms. The CO adsorption during the reaction of catalytic partial oxidation of methane on Rh/MgO and Rh-Ni/MgO is similar to that on the reduced catalysts. On the other hand, the CO adsorption during the reaction on Rh-Co/MgO, Rh-Fe/MgO, and Rh-CeO(2)/MgO is different from that on the reduced catalysts, and this is related to the structural change of these catalysts during the reaction.  相似文献   

17.
Epilepsy is a neurological disorder involving persistent spontaneous seizures and uncontrolled neuronal excitability that leads to cognitive impairments and blood–brain barrier (BBB) disruption. Currently available antiepileptic drugs present side effects and researchers are trying to discover new agents with properties to overcome these drawbacks. The aim was to synthesize magnesium oxide (MgO) and zinc oxide (ZnO) nanoparticles from Datura alba fresh leaf extracts and evaluate their anti-epileptic potential in mice kindling or a repetitive seizures model. The phytoassisted synthesized nanoparticles were characterized using spectroscopy; FT-IR, XRD, SEM, and EDX. Analysis of the NPs confirmed the crystalline pleomorphic shape using the salts of both zinc and magnesium possibly stabilized, functionalized and reduced by bioactive molecules present in plant extract. By using several characterization techniques, NPs were confirmed. UV-Vis spectroscopy of biologically produced ZnO and MgO revealed distinctive peaks at 380 nm and 242 nm, respectively. Our findings categorically demonstrated the reductive role of biomolecules in the formation of ZnO and MgO NPs. The mice kindling model was induced using seven injections of Pentylenetetrazole (PTZ, 40 mg/kg, i.p) for 15 days alternatively. The results showed that mice post-treated with either ZnO or MgO nanoparticles (10 mg/kg, i.p) significantly improved in respect of behavior and memory as confirmed in the Morris water maze (MWM), open field (OF), novel object recognition (NOR) test compared with PTZ treated mice. Furthermore, the ZnO and MgO nanoparticle treatment also maintained the integrity of the BBB, reducing the leakage, as confirmed by Evans blue dye (EBD) compared with PTZ treated mice only. In summary, the current finding demonstrates that green synthesized ZnO and MgO nanoparticles have neuroprotective, ant-epileptic potential, molecular mechanisms, and clinical implications need to be further explored.  相似文献   

18.
We report the optical and structural properties of ZnO and MgO nanoparticles. The samples are obtained by a simple method using a new template of hexamethylene tetramine. The optical properties of the samples are studied by UV-visible spectroscopy. Their crystal structure and morphology are studied by XRD and scanning electron microscopy. The absorption spectra of MgO and ZnO show that the optical band gaps are 4.27 eV and 3.02 eV, respectively. In this investigation the photocatalytic degradation of indigo carmine (IC) in water is studied. The effects of some parameters such as pH, amount of catalyst, initial concentration of dye, are examined.  相似文献   

19.
ZnO/MgO nanocomposites have been synthesized by an easy and cost effective thermal evaporation technique. Various growth temperatures ranging from 800 to 900 °C were tried. It is observed that the process temperature plays a key role in the formation of ZnO/MgO nanocomposite and the proper formation of ZnO/MgO nanocomposite occurs at 875 °C temperature as confirmed by X-ray diffraction studies. Scanning electron microscopic images indicate that the ZnO/MgO nanocomposite is formed as agglomerated nanoparticles distributed over a large area. Energy dispersive X-ray analyses also reveal that the Mg composition in the synthesized nanocomposite strongly depends on the process temperature. Photoluminescence (PL) spectrum exhibits a blue shift for the ZnO/MgO nanocomposite synthesized at 875 °C indicating the incorporation of Mg into the ZnO crystal lattice. A higher PL intensity ratio of band-edge to deep band emission has been observed for this sample indicating the presence of low crystalline defects.  相似文献   

20.
We report the microwave synthesis and characterization of Au and Pd nanoparticle catalysts supported on CeO2, CuO, and ZnO nanoparticles for CO oxidation. The results indicate that supported Au/CeO2 catalysts exhibit excellent activity for low-temperature CO oxidation. The Pd/CeO2 catalyst shows a uniform dispersion of Pd nanoparticles with a narrow size distribution within the ceria support. A remarkable enhancement of the catalytic activity is observed and directly correlated with the change in the morphology of the supported catalyst and the efficient dispersion of the active metal on the support achieved by using capping agents during the microwave synthesis. The significance of the current method lies mainly in its simplicity, flexibility, and the control of the different factors that determine the activity of the nanoparticle catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号