首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣。基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径。然而,在具有自旋轨道耦合的系统中,自旋流并不守恒。如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一。本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展。引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性。利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的自旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力。由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累。自旋霍尔效应已经在半导体和金属材料中被观察到。虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注。通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释。此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象。在能量简并点附近,自旋霍尔电导率和隧穿自旋电导率均会出现共振现象。当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应。  相似文献   

2.
自旋轨道耦合系统中的自旋流与自旋霍尔效应   总被引:2,自引:0,他引:2  
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣.基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径.然而,在具有自旋轨道耦合的系统中,自旋流并不守恒.如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一.本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展.引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性.利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的白旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力.由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累.自旋霍尔效应已经在半导体和金属材料中被观察到.虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注.通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释.此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象.在能量简并点附近,自旋霍尔电导率和隧穿白旋电导率均会出现共振现象.当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应.  相似文献   

3.
Graphene has an unusual low-energy band structure with four chiral bands and half-quantized and quantized Hall effects that have recently attracted theoretical and experimental attention. We study the Fermi energy and disorder dependence of its spin Hall conductivity sigma(xy)(SH). In the metallic regime we find that vertex corrections enhance the intrinsic spin Hall conductivity and that skew scattering can lead to sigma(xy)(SH) values that exceed the quantized ones expected when the chemical potential is inside the spin-orbit induced energy gap. We predict that large spin Hall conductivities will be observable in graphene even when the spin-orbit gap does not survive disorder.  相似文献   

4.
We have presented here the consequences of the non-uniform exchange field on the spin transport issues in spin chiral configuration of ferromagnetic graphene. Taking resort to the spin–orbit coupling (SOC) term and non-uniform exchange coupling term we are successful to express the expression of Hall conductivity in terms of the exchange field and SOC parameters through the Kubo formula approach. However, for a specific configuration of the exchange parameter we have evaluated the Berry curvature of the system. We also have paid attention to the study of SU(2) gauge theory of ferromagnetic graphene. The generation of anti damping spin–orbit torque in spin chiral magnetic graphene is also briefly discussed.  相似文献   

5.
A semiclassical constrained Hamiltonian system which was established to study dynamical systems of matrix valued non-Abelian gauge fields is employed to formulate spin Hall effect in noncommuting coordinates at the first order in the constant noncommutativity parameter θ. The method is first illustrated by studying the Hall effect on the noncommutative plane in a gauge independent fashion. Then, the Drude model type and the Hall effect type formulations of spin Hall effect are considered in noncommuting coordinates and θ deformed spin Hall conductivities which they provide are acquired. It is shown that by adjusting θ different formulations of spin Hall conductivity are accomplished. Hence, the noncommutative theory can be envisaged as an effective theory which unifies different approaches to similar physical phenomena.  相似文献   

6.
Quantum spin Hall effect in graphene   总被引:1,自引:0,他引:1  
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.  相似文献   

7.
A scheme for generating a quantum spin Hall effect for an ensemble of electrons trapped in a triple-well quantum dot system is proposed. Light-induced effective spin-dependent gauge potential and gauge filed are both given in a real Gaussian pulses space. In our scheme, the spin Hall effect can be demonstrated by electronic population without spin-orbit coupled interaction in the absence of any magnetic fields.  相似文献   

8.
We propose an experimental scheme to observe spin Hall effects with cold atoms in a light-induced gauge potential. Under an appropriate configuration, the cold atoms moving in a spatially varying laser field experience an effective spin-dependent gauge potential. Through numerical simulation, we demonstrate that such a gauge field leads to observable spin Hall currents under realistic conditions. We also discuss the quantum spin Hall state in an optical lattice.  相似文献   

9.
Dali Wang 《Physics letters. A》2011,375(45):4070-4073
We theoretically study the combined effect of magnetic and electric fields on the Landau levels and Hall conductivity in AA-stacked bilayer graphene. From the analytic expressions derived, we obtain explicit criterions for determining the zero-energy Landau level and different level crossings in the graphene bilayer. For providing a scheme of experimental verification, we further explore the quantum Hall effect in such a biased bilayer. It is found that the zero-conductance Hall plateau in this system can vanish at certain specific combinations of magnetic and electric fields, accompanying with the occurrence of resonance Hall conductivity steps.  相似文献   

10.
We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λ(R), and transitions to a strong TI when λ(R)>√[U(2)+t(⊥)(2)], where U and t(⊥) are, respectively, the interlayer potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.  相似文献   

11.
We present a theoretical study of gap opening in the zeroth Landau level in gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic field couples with the valley pseudospin degree of freedom of the charge carriers leading to the pseudo-Zeeman interaction. To investigate its role in transport at the charge neutrality point (CNP), we study the integer quantum Hall effect in gapped graphene in an angular magnetic field in the presence of pseudo-Zeeman interaction. Analytical expressions are derived for the Hall conductivity using the Kubo-Greenwood formula. We also determine the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that pseudo-Zeeman splitting leads to a minimum in the collisional conductivity at high magnetic fields and a zero plateau in the Hall conductivity. Evidence for activated transport at CNP is found from the temperature dependence of the collisional conductivity.  相似文献   

12.
Employing the Foldy–Wouthuysen transformation, it is demonstrated straightforwardly that the first and second Chern numbers are equal to the coefficients of the 2+1 and 4+1 dimensional Chern–Simons actions which are generated by the massive Dirac fermions coupled to the Abelian gauge fields. A topological insulator model in 2+1 dimensions is discussed and by means of a dimensional reduction approach the 1+1 dimensional descendant of the 2+1 dimensional Chern–Simons theory is presented. Field strength of the Berry gauge field corresponding to the 4+1 dimensional Dirac theory is explicitly derived through the Foldy–Wouthuysen transformation. Acquainted with it, the second Chern numbers are calculated for specific choices of the integration domain. A method is proposed to obtain 3+1 and 2+1 dimensional descendants of the effective field theory of the 4+1 dimensional time reversal invariant topological insulator theory. Inspired by the spin Hall effect in graphene, a hypothetical model of the time reversal invariant spin Hall insulator in 3+1 dimensions is proposed.  相似文献   

13.
An intrinsic contribution to the spin Hall effect in two‐dimensional silicene is considered theoretically within the linear response theory and Green's function formalism. When an external voltage normal to the silicene plane is applied, the spin Hall conductivity is shown to reveal a transition from the spin Hall insulator phase at low bias to the conventional insulator phase at higher voltages. This transition resembles the recently reported phase transition in bilayer graphene. The spin–orbit interaction responsible for this transition in silicene is much stronger than in graphene, which should make the transition observable experimentally. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
S. Das Sarma  Kun Yang   《Solid State Communications》2009,149(37-38):1502-1506
We apply Laughlin’s gauge argument to analyze the ν=0 quantum Hall effect observed in graphene when the Fermi energy lies near the Dirac point, and conclude that this necessarily leads to divergent bulk longitudinal resistivity in the zero temperature thermodynamic limit. We further predict that in a Corbino geometry measurement, where edge transport and other mesoscopic effects are unimportant, one should find the longitudinal conductivity vanishing in all graphene samples which have an underlying ν=0 quantized Hall effect. We argue that this ν=0 graphene quantum Hall state is qualitatively similar to the high field insulating phase (also known as the Hall insulator) in the lowest Landau level of ordinary semiconductor two-dimensional electron systems. We establish the necessity of having a high magnetic field and high mobility samples for the observation of the divergent resistivity as arising from the existence of disorder-induced density inhomogeneity at the graphene Dirac point.  相似文献   

15.
The effect of strong long-range disorder on the quantization of the Hall conductivity sigma{xy} in graphene is studied numerically. It is shown that increasing Landau-level mixing progressively destroys all plateaus in sigma{xy} except the plateaus at sigma{xy}=-/+e{2}/2h (per valley and per spin). The critical state at the Dirac point is robust to strong disorder and belongs to the universality class of the conventional plateau transitions in the integer quantum Hall effect. We propose that the breaking of time-reversal symmetry by ripples in graphene can realize this quantum critical point in a vanishing magnetic field.  相似文献   

16.
We study linear response to a longitudinal electric field on an antiferromagnetic honeycomb lattice with intrinsic and Rashba spin-orbit couplings (SOCs). It is found that the spin-valley Hall effect could emerge alone or coexist with the spin Hall effect. The spin and spin-valley Hall conductivities exhibit some peculiarities that depend on the distinct topological states of the graphene lattice. Furthermore, the spin and spin-valley Hall conductivities could be remarkably modulated by changing the Fermi level. Our findings suggest that the antiferromagnetic honeycomb lattice with SOCs is an excellent platform for potential applications of spintronics and valleytronics.  相似文献   

17.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

18.
We investigate the quantum Hall (QH) states near the charge-neutral Dirac point of a high mobility graphene sample in high magnetic fields. We find that the QH states at filling factors nu=+/-1 depend only on the perpendicular component of the field with respect to the graphene plane, indicating that they are not spin related. A nonlinear magnetic field dependence of the activation energy gap at filling factor nu=1 suggests a many-body origin. We therefore propose that the nu=0 and +/-1 states arise from the lifting of the spin and sublattice degeneracy of the n=0 Landau level, respectively.  相似文献   

19.
The optical conductivity of graphene and bilayer graphene in quantizing magnetic fields is studied. Both dynamical conductivities, longitudinal and Hall’s, are analytically evaluated. The conductivity peaks are explained in terms of electron transitions. Correspondences between the transition frequencies and the magneto-optical features are established using the theoretical results. The main optical transitions obey the selection rule Δn = 1 with the Landau number n. The Faraday rotation and light transmission in the quantizing magnetic fields are calculated. The effects of temperatures and magnetic fields on the chemical potential are considered.  相似文献   

20.
We study the effect of disorder on the intrinsic anomalous Hall conductivity in a magnetic two-dimensional electron gas with a Rashba-type spin-orbit interaction. We find that anomalous Hall conductivity vanishes unless the lifetime is spin-dependent, similar to the spin Hall conductivity in the nonmagnetic system. In addition, we find that the spin Hall conductivity does not vanish in the presence of magnetic scatterers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号